Genome-wide identification of aquaporin and their potential role in osmotic pressure regulation in Ruditapes philippinarum

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tao Liu, Hongtao Nie, Zhongming Huo, Xiwu Yan
{"title":"Genome-wide identification of aquaporin and their potential role in osmotic pressure regulation in Ruditapes philippinarum","authors":"Tao Liu,&nbsp;Hongtao Nie,&nbsp;Zhongming Huo,&nbsp;Xiwu Yan","doi":"10.1016/j.cbd.2025.101436","DOIUrl":null,"url":null,"abstract":"<div><div>Aquaporins (AQPs) are specialized membrane proteins that create selective water channels, facilitating the transport of water across cell membranes and playing a vital role in maintaining water balance and regulating osmotic pressure in aquatic animals. This study identified 9 <em>aquaporin</em> genes from the genome of <em>R. philippinarum</em>, and a comprehensive analysis was conducted on their gene structure, phylogenetic relationships, protein structure, and chromosome localization. RNA-seq data analysis revealed that <em>aquaporin</em> genes were differentially expressed at different developmental stages, in tissue distribution, and in response to salinity stress. In addition, qPCR results revealed that the expression levels of <em>aquaporin</em> genes (<em>AQP1</em>, <em>AQP4d</em>, and <em>AQP3</em>) were significantly elevated in response to both acute low and high salinity stress, suggesting their important role in osmotic pressure regulation in <em>R. philippinarum</em>. This study's results offer an important reference for further investigations into the regulation of osmotic pressure and salinity adaptation of aquaporin in <em>R. philippinarum.</em></div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"54 ","pages":"Article 101436"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000243","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aquaporins (AQPs) are specialized membrane proteins that create selective water channels, facilitating the transport of water across cell membranes and playing a vital role in maintaining water balance and regulating osmotic pressure in aquatic animals. This study identified 9 aquaporin genes from the genome of R. philippinarum, and a comprehensive analysis was conducted on their gene structure, phylogenetic relationships, protein structure, and chromosome localization. RNA-seq data analysis revealed that aquaporin genes were differentially expressed at different developmental stages, in tissue distribution, and in response to salinity stress. In addition, qPCR results revealed that the expression levels of aquaporin genes (AQP1, AQP4d, and AQP3) were significantly elevated in response to both acute low and high salinity stress, suggesting their important role in osmotic pressure regulation in R. philippinarum. This study's results offer an important reference for further investigations into the regulation of osmotic pressure and salinity adaptation of aquaporin in R. philippinarum.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信