Pre-treated mesenchymal stem cell-derived exosomes: A new perspective for accelerating spinal cord injury repair

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Zhiqiang Liao , Junjian Zeng , Aiqing Lin , Yu Zou , Zhidong Zhou
{"title":"Pre-treated mesenchymal stem cell-derived exosomes: A new perspective for accelerating spinal cord injury repair","authors":"Zhiqiang Liao ,&nbsp;Junjian Zeng ,&nbsp;Aiqing Lin ,&nbsp;Yu Zou ,&nbsp;Zhidong Zhou","doi":"10.1016/j.ejphar.2025.177349","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) is a devastating event for the central nervous system (CNS), often resulting in the loss of sensory and motor functions. It profoundly affects both the physiological and psychological well-being of patients, reducing their quality of life while also imposing significant economic pressure on families and the healthcare system. Due to the complex pathophysiology of SCI, effective treatments for promoting recovery remain scarce. Mesenchymal stem cell-derived exosomes (MSC-Exos) offer advantages such as low immunogenicity, good biocompatibility, and the ability to cross the blood-spinal cord barrier (BSCB). In preclinical studies, they have progressively shown efficacy in promoting SCI repair and functional recovery. However, the low yield and insufficient targeting of MSC-Exos limit their therapeutic efficacy. Currently, genetic engineering and other preprocessing techniques are being employed to optimize both the yield and functional properties of exosomes, thereby enhancing their therapeutic potential. Therefore, this paper provides an overview of the pathophysiology of SCI and the biogenesis of exosomes. It also summarizes current approaches to optimizing exosome performance. Additionally, it details the mechanisms through which optimized exosomes provide neuroprotection and explores the potential of combined treatments involving MSC-Exos and hydrogels.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"992 ","pages":"Article 177349"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925001025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a devastating event for the central nervous system (CNS), often resulting in the loss of sensory and motor functions. It profoundly affects both the physiological and psychological well-being of patients, reducing their quality of life while also imposing significant economic pressure on families and the healthcare system. Due to the complex pathophysiology of SCI, effective treatments for promoting recovery remain scarce. Mesenchymal stem cell-derived exosomes (MSC-Exos) offer advantages such as low immunogenicity, good biocompatibility, and the ability to cross the blood-spinal cord barrier (BSCB). In preclinical studies, they have progressively shown efficacy in promoting SCI repair and functional recovery. However, the low yield and insufficient targeting of MSC-Exos limit their therapeutic efficacy. Currently, genetic engineering and other preprocessing techniques are being employed to optimize both the yield and functional properties of exosomes, thereby enhancing their therapeutic potential. Therefore, this paper provides an overview of the pathophysiology of SCI and the biogenesis of exosomes. It also summarizes current approaches to optimizing exosome performance. Additionally, it details the mechanisms through which optimized exosomes provide neuroprotection and explores the potential of combined treatments involving MSC-Exos and hydrogels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信