{"title":"Fosamprenavir and Tirofiban to combat COPD and cancer: A drug repurposing strategy integrating virtual screening, MD simulation, and DFT studies","authors":"Jigme Sangay Dorjay Tamang , Suvankar Banerjee , Balaram Ghosh , Nilanjan Adhikari","doi":"10.1016/j.jmgm.2025.108967","DOIUrl":null,"url":null,"abstract":"<div><div>Matrix metalloproteinases (MMPs) are involved in different pathophysiological conditions like cancer, COPD, asthma, and inflammatory diseases. Among these MMPs, macrophage metalloelastase is one of the prime targets for COPD, and cancer. Therefore, to combat such diseases, potent novel macrophage metalloelastase inhibitors can be considered. Here, the classification-based molecular modeling was performed on large data of macrophage metalloelastase inhibitors that identified dibenzofuran, and diphenyl ether groups as important substructures contributing towards potent macrophage metalloelastase inhibition. This information was further implicated in repurposing marketed drugs through fragment-based and molecular docking-based virtual screening with molecular dynamics (MD) simulation-based stability validation and DFT calculations. This study identified fosamprenavir and tirofiban as promising hits that can exhibit potent macrophage metalloelastase inhibition which was also validated by the MD simulation and DFT-based calculations. Therefore, this study not only revealed these repurposed drugs as effective macrophage metalloelastase inhibitors but also opened up a horizon in developing novel potent macrophage metalloelastase inhibitors for the management of cancer and COPD in the future.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"136 ","pages":"Article 108967"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000270","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix metalloproteinases (MMPs) are involved in different pathophysiological conditions like cancer, COPD, asthma, and inflammatory diseases. Among these MMPs, macrophage metalloelastase is one of the prime targets for COPD, and cancer. Therefore, to combat such diseases, potent novel macrophage metalloelastase inhibitors can be considered. Here, the classification-based molecular modeling was performed on large data of macrophage metalloelastase inhibitors that identified dibenzofuran, and diphenyl ether groups as important substructures contributing towards potent macrophage metalloelastase inhibition. This information was further implicated in repurposing marketed drugs through fragment-based and molecular docking-based virtual screening with molecular dynamics (MD) simulation-based stability validation and DFT calculations. This study identified fosamprenavir and tirofiban as promising hits that can exhibit potent macrophage metalloelastase inhibition which was also validated by the MD simulation and DFT-based calculations. Therefore, this study not only revealed these repurposed drugs as effective macrophage metalloelastase inhibitors but also opened up a horizon in developing novel potent macrophage metalloelastase inhibitors for the management of cancer and COPD in the future.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.