Dual Fine-Grained network with frequency Transformer for change detection on remote sensing images

IF 7.6 Q1 REMOTE SENSING
Zhen Li , Zhenxin Zhang , Mengmeng Li , Liqiang Zhang , Xueli Peng , Rixing He , Leidong Shi
{"title":"Dual Fine-Grained network with frequency Transformer for change detection on remote sensing images","authors":"Zhen Li ,&nbsp;Zhenxin Zhang ,&nbsp;Mengmeng Li ,&nbsp;Liqiang Zhang ,&nbsp;Xueli Peng ,&nbsp;Rixing He ,&nbsp;Leidong Shi","doi":"10.1016/j.jag.2025.104393","DOIUrl":null,"url":null,"abstract":"<div><div>Change detection is a fundamental yet challenging task in remote sensing, crucial for monitoring urban expansion, land use changes, and environmental dynamics. However, compared with common color images, objects in remote sensing images exhibit minimal interclass variation and significant intraclass variation in the spectral dimension, with obvious scale inconsistency in the spatial dimension. Change detection complexity presents significant challenges, including differentiating similar objects, accounting for scale variations, and identifying pseudo changes. This research introduces a dual fine-grained network with a frequency Transformer (named as FTransDF-Net) to address the above issues. Specifically, for small-scale and approximate spectral ground objects, the network employs an encoder-decoder architecture consisting of dual fine-grained gated (DFG) modules. This enables the extraction and fusion of fine-grained level information in dual dimensions of features, facilitating a comprehensive analysis of their differences and correlations. As a result, a dynamic fusion representation of salient information is achieved. Additionally, we develop a lightweight frequency transformer (LFT) with minimal parameters for detecting large-scale ground objects that undergo significant changes over time. This is achieved by incorporating a frequency attention (FA) module, which utilizes Fourier transform to model long-range dependencies and combines global adaptive attentive features with multi-level fine-grained features. Our comparative experiments across four publicly available datasets demonstrate that FTransDF-Net reaches advanced results. Importantly, it outperforms the leading comparison method by 1.23% and 2.46% regarding IoU metrics concerning CDD and DSIFN, respectively. Furthermore, efficacy for each module is substantiated through ablation experiments. The code is accessible on <span><span>https://github.com/LeeThrzz/FTrans-DF-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104393"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Change detection is a fundamental yet challenging task in remote sensing, crucial for monitoring urban expansion, land use changes, and environmental dynamics. However, compared with common color images, objects in remote sensing images exhibit minimal interclass variation and significant intraclass variation in the spectral dimension, with obvious scale inconsistency in the spatial dimension. Change detection complexity presents significant challenges, including differentiating similar objects, accounting for scale variations, and identifying pseudo changes. This research introduces a dual fine-grained network with a frequency Transformer (named as FTransDF-Net) to address the above issues. Specifically, for small-scale and approximate spectral ground objects, the network employs an encoder-decoder architecture consisting of dual fine-grained gated (DFG) modules. This enables the extraction and fusion of fine-grained level information in dual dimensions of features, facilitating a comprehensive analysis of their differences and correlations. As a result, a dynamic fusion representation of salient information is achieved. Additionally, we develop a lightweight frequency transformer (LFT) with minimal parameters for detecting large-scale ground objects that undergo significant changes over time. This is achieved by incorporating a frequency attention (FA) module, which utilizes Fourier transform to model long-range dependencies and combines global adaptive attentive features with multi-level fine-grained features. Our comparative experiments across four publicly available datasets demonstrate that FTransDF-Net reaches advanced results. Importantly, it outperforms the leading comparison method by 1.23% and 2.46% regarding IoU metrics concerning CDD and DSIFN, respectively. Furthermore, efficacy for each module is substantiated through ablation experiments. The code is accessible on https://github.com/LeeThrzz/FTrans-DF-Net.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信