Carbonate sediment dynamics in oceanic atoll lagoons of Lakshadweep Archipelago

IF 2.6 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Shradha Menon, Pankaj Khanna, Saikat Kumar Misra
{"title":"Carbonate sediment dynamics in oceanic atoll lagoons of Lakshadweep Archipelago","authors":"Shradha Menon,&nbsp;Pankaj Khanna,&nbsp;Saikat Kumar Misra","doi":"10.1016/j.margeo.2025.107498","DOIUrl":null,"url":null,"abstract":"<div><div>Atoll lagoons grow by constant sediment supply and are increasingly being affected by climate change. The impacts are non-uniform; thus, understanding the mechanisms governing the sediment dynamics is crucial to assessing atoll island stability. Satellite geomorphological and sedimentological studies have been conducted on Agatti and Kavaratti atolls in the Lakshadweep Archipelago (Northern Indian Ocean) to discern factors governing sediment dynamics. These lagoons, with maximum depths of 4 m, are grainstone-dominated (79 % - Agatti &amp; 96 % - Kavaratti). Sand-sized fractions (2–0.125 mm) constitute approx. 87 % and 90 % of the Agatti and Kavaratti lagoon, respectively. The major sediment producers include corals (34–57 % - Agatti; 37–58 % Kavaratti) and molluscs (31–34 % - Agatti; 32–39 % - Kavaratti) followed by forams (8–20 % - Agatti; 2–13 % - Kavaratti), algae (2–7 % - Agatti; 2–10 % - Kavaratti) and <em>Halimeda</em> (1–6 % - Agatti; 1–10 % - Kavaratti); within each sample fraction. Coral clasts and molluscs are prevalent near the north, and algae (including <em>Halimeda</em>) is abundant in the south in Agatti. In Kavaratti, molluscs and algae, and <em>Halimeda</em> are prevalent in the north (near the dredging channel) compared to coral clasts. For both atolls, forams are confined to the south and in the lagoon's interior. Generally, for both atolls, coral clasts and algae (including <em>Halimeda</em>) decrease from the reef flat to the island, while molluscs show opposite trends. Reef flats, patch reefs and seagrass patches serve as significant production zones. Anthropogenic factors (dredging) have altered ocean parameters, evidenced by an increase in algae and molluscs and a decrease in coral clasts. The wave-induced currents dictate sediment redistribution, with lighter components such as molluscs and coral clasts transported across the lagoon, while sheltered zones retain particular components such as forams. The small size of the atolls, shallow bathymetry and sand-sized sediments imply potential bucket fill. As climate change progresses, intensified wave-induced currents (linked to stronger monsoons) will result in the retention of coarse-grained sand, with these components dictating future sediment supply. Coupled with rising coral mortality, molluscs would become dominant, affecting sediment production; leading to land loss. The study underscores the importance of local factors such as geomorphic zones and hydrodynamics in discerning island stability in terms of climate change.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"481 ","pages":"Article 107498"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322725000234","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atoll lagoons grow by constant sediment supply and are increasingly being affected by climate change. The impacts are non-uniform; thus, understanding the mechanisms governing the sediment dynamics is crucial to assessing atoll island stability. Satellite geomorphological and sedimentological studies have been conducted on Agatti and Kavaratti atolls in the Lakshadweep Archipelago (Northern Indian Ocean) to discern factors governing sediment dynamics. These lagoons, with maximum depths of 4 m, are grainstone-dominated (79 % - Agatti & 96 % - Kavaratti). Sand-sized fractions (2–0.125 mm) constitute approx. 87 % and 90 % of the Agatti and Kavaratti lagoon, respectively. The major sediment producers include corals (34–57 % - Agatti; 37–58 % Kavaratti) and molluscs (31–34 % - Agatti; 32–39 % - Kavaratti) followed by forams (8–20 % - Agatti; 2–13 % - Kavaratti), algae (2–7 % - Agatti; 2–10 % - Kavaratti) and Halimeda (1–6 % - Agatti; 1–10 % - Kavaratti); within each sample fraction. Coral clasts and molluscs are prevalent near the north, and algae (including Halimeda) is abundant in the south in Agatti. In Kavaratti, molluscs and algae, and Halimeda are prevalent in the north (near the dredging channel) compared to coral clasts. For both atolls, forams are confined to the south and in the lagoon's interior. Generally, for both atolls, coral clasts and algae (including Halimeda) decrease from the reef flat to the island, while molluscs show opposite trends. Reef flats, patch reefs and seagrass patches serve as significant production zones. Anthropogenic factors (dredging) have altered ocean parameters, evidenced by an increase in algae and molluscs and a decrease in coral clasts. The wave-induced currents dictate sediment redistribution, with lighter components such as molluscs and coral clasts transported across the lagoon, while sheltered zones retain particular components such as forams. The small size of the atolls, shallow bathymetry and sand-sized sediments imply potential bucket fill. As climate change progresses, intensified wave-induced currents (linked to stronger monsoons) will result in the retention of coarse-grained sand, with these components dictating future sediment supply. Coupled with rising coral mortality, molluscs would become dominant, affecting sediment production; leading to land loss. The study underscores the importance of local factors such as geomorphic zones and hydrodynamics in discerning island stability in terms of climate change.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Geology
Marine Geology 地学-地球科学综合
CiteScore
6.10
自引率
6.90%
发文量
175
审稿时长
21.9 weeks
期刊介绍: Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信