Effective preprocessing techniques for improved facial recognition under variable conditions

Afolabi I. Awodeyi, Omolegho A. Ibok, Idama Omokaro, Jones U. Ekwemuka, Michael O. Ighofiomoni
{"title":"Effective preprocessing techniques for improved facial recognition under variable conditions","authors":"Afolabi I. Awodeyi,&nbsp;Omolegho A. Ibok,&nbsp;Idama Omokaro,&nbsp;Jones U. Ekwemuka,&nbsp;Michael O. Ighofiomoni","doi":"10.1016/j.fraope.2025.100225","DOIUrl":null,"url":null,"abstract":"<div><div>Facial recognition systems are increasingly used across various applications; however, their performance often degrades in challenging conditions such as poor lighting and occlusions. Preprocessing techniques play a critical role in improving input image quality, enhancing feature extraction, and ultimately boosting recognition accuracy. This study evaluates advanced preprocessing methods, including edge detection using the Canny detector and illumination normalization through histogram equalization and gamma correction, which are integrated into a preprocessing pipeline. A detailed comparative analysis demonstrates significant recognition rate improvements under low-light and occluded scenarios, supported by quantitative evidence. Additionally, computational efficiency is evaluated, highlighting the applicability of these methods for large-scale and real-time systems. The results affirm that effective preprocessing strengthens the performance and reliability of facial recognition systems, making them suitable for real-world applications where conditions are often unpredictable.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"10 ","pages":"Article 100225"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Facial recognition systems are increasingly used across various applications; however, their performance often degrades in challenging conditions such as poor lighting and occlusions. Preprocessing techniques play a critical role in improving input image quality, enhancing feature extraction, and ultimately boosting recognition accuracy. This study evaluates advanced preprocessing methods, including edge detection using the Canny detector and illumination normalization through histogram equalization and gamma correction, which are integrated into a preprocessing pipeline. A detailed comparative analysis demonstrates significant recognition rate improvements under low-light and occluded scenarios, supported by quantitative evidence. Additionally, computational efficiency is evaluated, highlighting the applicability of these methods for large-scale and real-time systems. The results affirm that effective preprocessing strengthens the performance and reliability of facial recognition systems, making them suitable for real-world applications where conditions are often unpredictable.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信