Gerallt E. Hughes , Chiara Maria Petrone , Hilary Downes , Nick R. Varley , Dulce Vargas-Bracamontes , Raul Arámbula-Mendoza , Edgar A. Cortes-Calderon , Yannick Buret
{"title":"Linking monitoring data and timescales of mafic recharge during the 2013–17 eruption at Volcán de Colima, Mexico","authors":"Gerallt E. Hughes , Chiara Maria Petrone , Hilary Downes , Nick R. Varley , Dulce Vargas-Bracamontes , Raul Arámbula-Mendoza , Edgar A. Cortes-Calderon , Yannick Buret","doi":"10.1016/j.jvolgeores.2025.108285","DOIUrl":null,"url":null,"abstract":"<div><div>Timescales of mafic magma recharge beneath Volcán de Colima have been calculated from diffusion modelling of reversely zoned pyroxene crystals erupted in the 2013–17 interplinian eruptive period. The results suggest that injections of low volume mafic magma are periodic and ephemeral, residing in the plumbing system for only weeks to months before eruption. At least three separate periods of magma recharge and mixing occurred within <em>c</em>. 3 years in October 2013–April 2014, September 2014–June 2015 and November 2015–September 2016. These timescales have been compared with the continuous seismic monitoring of the volcano and quasi-continuous gas monitoring data. Each eruptive phase shows different patterns between petrological and monitoring data, suggesting a complex mixing-eruption relationship, which may be related to the frequency and volume of recharge events, as well as the thermal state of the magma reservoir. Low frequency or low volumes of magma injection may result in a lack of correlation with any change in the monitoring data. High frequency of magma injections priming the magma reservoir results in a strong correlation between recharge events and monitoring record, which may be useful for interpreting future monitoring data.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"460 ","pages":"Article 108285"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027325000216","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Timescales of mafic magma recharge beneath Volcán de Colima have been calculated from diffusion modelling of reversely zoned pyroxene crystals erupted in the 2013–17 interplinian eruptive period. The results suggest that injections of low volume mafic magma are periodic and ephemeral, residing in the plumbing system for only weeks to months before eruption. At least three separate periods of magma recharge and mixing occurred within c. 3 years in October 2013–April 2014, September 2014–June 2015 and November 2015–September 2016. These timescales have been compared with the continuous seismic monitoring of the volcano and quasi-continuous gas monitoring data. Each eruptive phase shows different patterns between petrological and monitoring data, suggesting a complex mixing-eruption relationship, which may be related to the frequency and volume of recharge events, as well as the thermal state of the magma reservoir. Low frequency or low volumes of magma injection may result in a lack of correlation with any change in the monitoring data. High frequency of magma injections priming the magma reservoir results in a strong correlation between recharge events and monitoring record, which may be useful for interpreting future monitoring data.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.