Influence of coupling symmetries and noise on the critical dynamics of synchronizing oscillator lattices

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Ricardo Gutiérrez, Rodolfo Cuerno
{"title":"Influence of coupling symmetries and noise on the critical dynamics of synchronizing oscillator lattices","authors":"Ricardo Gutiérrez,&nbsp;Rodolfo Cuerno","doi":"10.1016/j.physd.2025.134552","DOIUrl":null,"url":null,"abstract":"<div><div>Recent work has shown that the synchronization process in lattices of self-sustained (phase and limit-cycle) oscillators displays universal scale-invariant behavior previously studied in the physics of surface kinetic roughening. The type of dynamic scaling ansatz which is verified depends on the randomness that occurs in the system, whether it is columnar disorder (quenched noise given by the random assignment of natural frequencies), leading to anomalous scaling, or else time-dependent noise, inducing the more standard Family-Vicsek dynamic scaling ansatz, as in equilibrium critical dynamics. The specific universality class also depends on the coupling function: for a sine function (as in the celebrated Kuramoto model) the critical behavior is that of the Edwards-Wilkinson equation for the corresponding type of randomness, with Gaussian fluctuations around the average growth. In all the other cases investigated, Tracy–Widom fluctuations ensue, associated with the celebrated Kardar–Parisi–Zhang equation for rough interfaces. Two questions remain to be addressed in order to complete the picture, however: (1) Is the atypical scaling displayed by the sine coupling preserved if other coupling functions satisfying the same (odd) symmetry are employed (as suggested by continuum approximations and symmetry arguments)? and (2) how does the competition between both types of randomness (which are expected to coexist in experimental settings) affect the nonequilibrium behavior? We address the latter question by numerically characterizing the crossover between thermal-noise and columnar-disorder criticality, and the former by providing evidence confirming that it is the symmetry of the coupling function that sets apart the sine coupling, among other odd-symmetric couplings, due to the absence of Kardar–Parisi–Zhang fluctuations.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"473 ","pages":"Article 134552"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000314","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work has shown that the synchronization process in lattices of self-sustained (phase and limit-cycle) oscillators displays universal scale-invariant behavior previously studied in the physics of surface kinetic roughening. The type of dynamic scaling ansatz which is verified depends on the randomness that occurs in the system, whether it is columnar disorder (quenched noise given by the random assignment of natural frequencies), leading to anomalous scaling, or else time-dependent noise, inducing the more standard Family-Vicsek dynamic scaling ansatz, as in equilibrium critical dynamics. The specific universality class also depends on the coupling function: for a sine function (as in the celebrated Kuramoto model) the critical behavior is that of the Edwards-Wilkinson equation for the corresponding type of randomness, with Gaussian fluctuations around the average growth. In all the other cases investigated, Tracy–Widom fluctuations ensue, associated with the celebrated Kardar–Parisi–Zhang equation for rough interfaces. Two questions remain to be addressed in order to complete the picture, however: (1) Is the atypical scaling displayed by the sine coupling preserved if other coupling functions satisfying the same (odd) symmetry are employed (as suggested by continuum approximations and symmetry arguments)? and (2) how does the competition between both types of randomness (which are expected to coexist in experimental settings) affect the nonequilibrium behavior? We address the latter question by numerically characterizing the crossover between thermal-noise and columnar-disorder criticality, and the former by providing evidence confirming that it is the symmetry of the coupling function that sets apart the sine coupling, among other odd-symmetric couplings, due to the absence of Kardar–Parisi–Zhang fluctuations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信