Highly Stable Electrolyte Design Enables Improved Electrode/Electrolyte Interface Stability for Lithium-Metal Batteries

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yilong Lin*, Yanshan Ji, Shuqing Gao, Sheng Huang, Jiawei Li, Wenyang Zhang, Qi Peng, Feng Liu, Yanwu Chen* and Yuezhong Meng*, 
{"title":"Highly Stable Electrolyte Design Enables Improved Electrode/Electrolyte Interface Stability for Lithium-Metal Batteries","authors":"Yilong Lin*,&nbsp;Yanshan Ji,&nbsp;Shuqing Gao,&nbsp;Sheng Huang,&nbsp;Jiawei Li,&nbsp;Wenyang Zhang,&nbsp;Qi Peng,&nbsp;Feng Liu,&nbsp;Yanwu Chen* and Yuezhong Meng*,&nbsp;","doi":"10.1021/acsaem.4c0301610.1021/acsaem.4c03016","DOIUrl":null,"url":null,"abstract":"<p >In lithium (Li)-metal batteries (LMBs), the functional electrolytes need to be compatible with both a high-voltage cathode and a highly reactive anode. However, the carbonate-based electrolytes in commercial lithium-ion batteries (LIBs) exhibit insufficient reductive stability due to severe side reactions and the formation of lithium dendrites on the Li anode. In this study, the use of LiPF<sub>6</sub> and lithium difluorobis(oxalato) phosphate (LiDFBOP) dual-salt electrolyte composed of ester and ether cosolvents (FEC/DME) enables the stabilization of the high-voltage LMBs through modulating the interfacial electrochemistry. Such an electrolyte design strategy is demonstrated to regulate the Li plating/stripping behavior by forming a robust anion-derived solid electrolyte interphase (SEI) film on the anode and to improve the cathode/electrolyte interfacial stability under high-voltage conditions. As a result, the as-developed electrolyte exhibits stable cycling over 800 h in Li∥Li symmetric cells and ultralong lifespans with capacity retention of 66% after 2000 cycles in Li∥LiFePO<sub>4</sub>. Targeted electrolyte engineering is presented as a promising approach for practical high-performance Li-metal batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 3","pages":"1803–1811 1803–1811"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In lithium (Li)-metal batteries (LMBs), the functional electrolytes need to be compatible with both a high-voltage cathode and a highly reactive anode. However, the carbonate-based electrolytes in commercial lithium-ion batteries (LIBs) exhibit insufficient reductive stability due to severe side reactions and the formation of lithium dendrites on the Li anode. In this study, the use of LiPF6 and lithium difluorobis(oxalato) phosphate (LiDFBOP) dual-salt electrolyte composed of ester and ether cosolvents (FEC/DME) enables the stabilization of the high-voltage LMBs through modulating the interfacial electrochemistry. Such an electrolyte design strategy is demonstrated to regulate the Li plating/stripping behavior by forming a robust anion-derived solid electrolyte interphase (SEI) film on the anode and to improve the cathode/electrolyte interfacial stability under high-voltage conditions. As a result, the as-developed electrolyte exhibits stable cycling over 800 h in Li∥Li symmetric cells and ultralong lifespans with capacity retention of 66% after 2000 cycles in Li∥LiFePO4. Targeted electrolyte engineering is presented as a promising approach for practical high-performance Li-metal batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信