Xiaofei Sun, Mengge Li, Bin Yao*, Yongfeng Li*, Zhanhui Ding*, Ding Ma, Yuting Sun, Yan Zhu, Ning Ding, Liyuan Shi and Shuang Li,
{"title":"Enhancing the Efficiency of CZTSSe Solar Cells by Optimizing K-Doping Concentration and Selenization Temperature","authors":"Xiaofei Sun, Mengge Li, Bin Yao*, Yongfeng Li*, Zhanhui Ding*, Ding Ma, Yuting Sun, Yan Zhu, Ning Ding, Liyuan Shi and Shuang Li, ","doi":"10.1021/acsaem.4c0314510.1021/acsaem.4c03145","DOIUrl":null,"url":null,"abstract":"<p >As is well-known, the lower open-circuit voltage (<i>V</i><sub>OC</sub>) and fill factor (FF) are two major reasons for the lower efficiency of Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) solar cells. K-doping has become an effective means of improving the efficiency. In this work, the effect of K-doping on power conversion efficiency (PCE) was studied in a K-doping concentration (K/Cu) of 0 to 15 mol % at a selenization temperature ranging from 490 to 530 °C. As a result of our study, it was found that the optimal K-doping concentration for obtaining the highest PCE decreases with increasing selenization temperature. Through optimizing the K-doping concentration and selenization temperature, the highest PCE of 10.15% is obtained at K/Cu = 10 mol % and 510 °C. It is proved that the increased PCE induced by K-doping at a fixed selenization comes mainly from the decreased reverse saturated current density (<i>J</i><sub>0</sub>), then from the photogenerated current density (<i>J</i><sub>L</sub>), series resistance (<i>R</i><sub>S</sub>), and shunt resistance (<i>R</i><sub>Sh</sub>).</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 3","pages":"1879–1886 1879–1886"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03145","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As is well-known, the lower open-circuit voltage (VOC) and fill factor (FF) are two major reasons for the lower efficiency of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. K-doping has become an effective means of improving the efficiency. In this work, the effect of K-doping on power conversion efficiency (PCE) was studied in a K-doping concentration (K/Cu) of 0 to 15 mol % at a selenization temperature ranging from 490 to 530 °C. As a result of our study, it was found that the optimal K-doping concentration for obtaining the highest PCE decreases with increasing selenization temperature. Through optimizing the K-doping concentration and selenization temperature, the highest PCE of 10.15% is obtained at K/Cu = 10 mol % and 510 °C. It is proved that the increased PCE induced by K-doping at a fixed selenization comes mainly from the decreased reverse saturated current density (J0), then from the photogenerated current density (JL), series resistance (RS), and shunt resistance (RSh).
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.