{"title":"Normalized Protein–Ligand Distance Likelihood Score for End-to-End Blind Docking and Virtual Screening","authors":"Song Xia, Yaowen Gu and Yingkai Zhang*, ","doi":"10.1021/acs.jcim.4c0101410.1021/acs.jcim.4c01014","DOIUrl":null,"url":null,"abstract":"<p >Molecular Docking is a critical task in structure-based virtual screening. Recent advancements have showcased the efficacy of diffusion-based generative models for blind docking tasks. However, these models do not inherently estimate protein–ligand binding strength thus cannot be directly applied to virtual screening tasks. Protein–ligand scoring functions serve as fast and approximate computational methods to evaluate the binding strength between the protein and ligand. In this work, we introduce normalized mixture density network (NMDN) score, a deep learning (DL)-based scoring function learning the probability density distribution of distances between protein residues and ligand atoms. The NMDN score addresses limitations observed in existing DL scoring functions and performs robustly in both pose selection and virtual screening tasks. Additionally, we incorporate an interaction module to predict the experimental binding affinity score to fully utilize the learned protein and ligand representations. Finally, we present an end-to-end blind docking and virtual screening protocol named DiffDock-NMDN. For each protein–ligand pair, we employ DiffDock to sample multiple poses, followed by utilizing the NMDN score to select the optimal binding pose, and estimating the binding affinity using scoring functions. Our protocol achieves an average enrichment factor of 4.96 on the LIT-PCBA data set, proving effective in real-world drug discovery scenarios where binder information is limited. This work not only presents a robust DL-based scoring function with superior pose selection and virtual screening capabilities but also offers a blind docking protocol and benchmarks to guide future scoring function development.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 3","pages":"1101–1114 1101–1114"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01014","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular Docking is a critical task in structure-based virtual screening. Recent advancements have showcased the efficacy of diffusion-based generative models for blind docking tasks. However, these models do not inherently estimate protein–ligand binding strength thus cannot be directly applied to virtual screening tasks. Protein–ligand scoring functions serve as fast and approximate computational methods to evaluate the binding strength between the protein and ligand. In this work, we introduce normalized mixture density network (NMDN) score, a deep learning (DL)-based scoring function learning the probability density distribution of distances between protein residues and ligand atoms. The NMDN score addresses limitations observed in existing DL scoring functions and performs robustly in both pose selection and virtual screening tasks. Additionally, we incorporate an interaction module to predict the experimental binding affinity score to fully utilize the learned protein and ligand representations. Finally, we present an end-to-end blind docking and virtual screening protocol named DiffDock-NMDN. For each protein–ligand pair, we employ DiffDock to sample multiple poses, followed by utilizing the NMDN score to select the optimal binding pose, and estimating the binding affinity using scoring functions. Our protocol achieves an average enrichment factor of 4.96 on the LIT-PCBA data set, proving effective in real-world drug discovery scenarios where binder information is limited. This work not only presents a robust DL-based scoring function with superior pose selection and virtual screening capabilities but also offers a blind docking protocol and benchmarks to guide future scoring function development.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.