{"title":"Deciphering Protein Secondary Structures and Nucleic Acids in Cryo-EM Maps Using Deep Learning","authors":"Hong Cao, Jiahua He, Tao Li and Sheng-You Huang*, ","doi":"10.1021/acs.jcim.4c0197110.1021/acs.jcim.4c01971","DOIUrl":null,"url":null,"abstract":"<p >With the resolution revolution of cryo-electron microscopy (cryo-EM) and the rapid development of image processing technology, cryo-EM has become an indispensable experimental method for determining the three-dimensional structures of biological macromolecules. However, structural modeling from cryo-EM maps remains a difficult task for intermediate-resolution maps. In such cases, detection of protein secondary structures and nucleic acid locations in an EM map is of great value for model building of the map. Meeting the need, we present a deep learning-based method for detecting protein secondary structures and nucleic acid locations in cryo-EM density maps, named EMInfo. EMInfo was extensively evaluated on two protein-nucleic acid complex test sets including intermediate-resolution experimental maps and high-resolution experimental maps and compared them with two state-of-the-art methods including Emap2sec+ and Haruspex. It is shown that EMInfo can accurately predict different structural categories in an EM map. EMInfo is freely available at http://huanglab.phys.hust.edu.cn/EMInfo/.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 3","pages":"1641–1652 1641–1652"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01971","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the resolution revolution of cryo-electron microscopy (cryo-EM) and the rapid development of image processing technology, cryo-EM has become an indispensable experimental method for determining the three-dimensional structures of biological macromolecules. However, structural modeling from cryo-EM maps remains a difficult task for intermediate-resolution maps. In such cases, detection of protein secondary structures and nucleic acid locations in an EM map is of great value for model building of the map. Meeting the need, we present a deep learning-based method for detecting protein secondary structures and nucleic acid locations in cryo-EM density maps, named EMInfo. EMInfo was extensively evaluated on two protein-nucleic acid complex test sets including intermediate-resolution experimental maps and high-resolution experimental maps and compared them with two state-of-the-art methods including Emap2sec+ and Haruspex. It is shown that EMInfo can accurately predict different structural categories in an EM map. EMInfo is freely available at http://huanglab.phys.hust.edu.cn/EMInfo/.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.