Mustafa Majid Rashak Al-Fartoos*, Anurag Roy, Tapas Kumar Mallick and Asif Ali Tahir*,
{"title":"Engineering Dual p–n-Type CuI with Significant Enhanced Performance for Advanced Thermoelectric Applications","authors":"Mustafa Majid Rashak Al-Fartoos*, Anurag Roy, Tapas Kumar Mallick and Asif Ali Tahir*, ","doi":"10.1021/acsaem.4c0313010.1021/acsaem.4c03130","DOIUrl":null,"url":null,"abstract":"<p >CuI is a well-known thermoelectric (TE) material recognized for its p-type characteristics. However, the development of its n-type counterpart and the integration of both p- and n-type CuI in thermoelectric generators (TEGs) remain largely unexplored. In this study, we successfully tuned the thermoelectric properties of CuI by strategically incorporating Ag, enabling the synthesis of both p-type (Ag<sub>0.2</sub>Cu<sub>0.8</sub>I) and n-type (Ag<sub>0.9</sub>Cu<sub>0.1</sub>I) materials using a cost-effective, greener, and scalable successive ionic layer adsorption and reaction (SILAR) method. The p-type Ag<sub>0.2</sub>Cu<sub>0.8</sub>I exhibited a figure of merit (ZT) of 0.47 at 340 K, driven by a high Seebeck coefficient of 810 μV·K<sup>–1</sup>. In contrast, the n-type Ag<sub>0.9</sub>Cu<sub>0.1</sub>I achieved an exceptional ZT of 2.5 at 340 K, attributed to an ultrahigh Seebeck coefficient of −1891 μV·K<sup>–1</sup>. These superior thermoelectric properties make CuI-based materials attractive alternatives to conventional TE materials, such as Bi<sub>2</sub>Te<sub>3</sub> and PbTe, which are limited by toxicity and resource scarcity. Furthermore, a prototype thermoelectric glazing unit (5 × 5 cm<sup>2</sup>) demonstrated a 14 K temperature differential, highlighting its dual functionality in power generation and building heat loss mitigation. These findings underscore the potential of low-cost CuI-based materials for advancing sustainable energy technologies.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 3","pages":"1864–1878 1864–1878"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c03130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03130","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CuI is a well-known thermoelectric (TE) material recognized for its p-type characteristics. However, the development of its n-type counterpart and the integration of both p- and n-type CuI in thermoelectric generators (TEGs) remain largely unexplored. In this study, we successfully tuned the thermoelectric properties of CuI by strategically incorporating Ag, enabling the synthesis of both p-type (Ag0.2Cu0.8I) and n-type (Ag0.9Cu0.1I) materials using a cost-effective, greener, and scalable successive ionic layer adsorption and reaction (SILAR) method. The p-type Ag0.2Cu0.8I exhibited a figure of merit (ZT) of 0.47 at 340 K, driven by a high Seebeck coefficient of 810 μV·K–1. In contrast, the n-type Ag0.9Cu0.1I achieved an exceptional ZT of 2.5 at 340 K, attributed to an ultrahigh Seebeck coefficient of −1891 μV·K–1. These superior thermoelectric properties make CuI-based materials attractive alternatives to conventional TE materials, such as Bi2Te3 and PbTe, which are limited by toxicity and resource scarcity. Furthermore, a prototype thermoelectric glazing unit (5 × 5 cm2) demonstrated a 14 K temperature differential, highlighting its dual functionality in power generation and building heat loss mitigation. These findings underscore the potential of low-cost CuI-based materials for advancing sustainable energy technologies.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.