VSIG4+ tumor-associated macrophages mediate neutrophil infiltration and impair antigen-specific immunity in aggressive cancers through epigenetic regulation of SPP1.

IF 11.4 1区 医学 Q1 ONCOLOGY
Zongfu Pan, Jinming Chen, Tong Xu, Anqi Cai, Bing Han, Ying Li, Ziwen Fang, Dingyi Yu, Shanshan Wang, Junyu Zhou, Yingying Gong, Yulu Che, Xiaozhou Zou, Lei Cheng, Zhuo Tan, Minghua Ge, Ping Huang
{"title":"VSIG4<sup>+</sup> tumor-associated macrophages mediate neutrophil infiltration and impair antigen-specific immunity in aggressive cancers through epigenetic regulation of SPP1.","authors":"Zongfu Pan, Jinming Chen, Tong Xu, Anqi Cai, Bing Han, Ying Li, Ziwen Fang, Dingyi Yu, Shanshan Wang, Junyu Zhou, Yingying Gong, Yulu Che, Xiaozhou Zou, Lei Cheng, Zhuo Tan, Minghua Ge, Ping Huang","doi":"10.1186/s13046-025-03303-z","DOIUrl":null,"url":null,"abstract":"<p><p>V-set and immunoglobulin domain-containing 4 (VSIG4) positive tumor-associated macrophage (VSIG4<sup>+</sup> TAM) is an immunosuppressive subpopulation newly identified in aggressive cancers. However, the mechanism how VSIG4<sup>+</sup> TAMs mediate immune evasion in aggressive cancers have not been fully elucidated. In our study, we found targeting VSIG4<sup>+</sup> TAMs by VSIG4 deficiency or blockade remarkably limited tumor growth and metastasis, especially those derived from anaplastic thyroid cancer (ATC) and pancreatic cancer, two extremely aggressive types. Moreover, the combination of VSIG4 blockade with a BRAF inhibitor synergistically enhanced anti-tumor activity in ATC-tumor bearing mice. VSIG4 deficiency recovered the antigen presentation (B2m, H2-k1, H2-d1) of TAMs and activated antigen-specific CD8<sup>+</sup> T cells by promoting their in vivo proliferation and intratumoral infiltration. Notably, loss of VSIG4 in TAMs significantly reduced the production of lactate and histone H3 lysine 18 lactylation, resulting the decreased transcription of SPP1 mediated by STAT3, which collectively disrupted the cell-cell interactions between TAMs and neutrophils. Further combination of VSIG4 with SPP1 blockade synergistically boosted anti-tumor activity. Overall, our studies demonstrate the epigenetic regulation function of VSIG4 confers on TAMs an alternative pattern, beyond the checkpoint role of VSIG4, to shape the immunosuppressive tumor microenvironment and impair antigen-specific immunity against aggressive cancers.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"45"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03303-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

V-set and immunoglobulin domain-containing 4 (VSIG4) positive tumor-associated macrophage (VSIG4+ TAM) is an immunosuppressive subpopulation newly identified in aggressive cancers. However, the mechanism how VSIG4+ TAMs mediate immune evasion in aggressive cancers have not been fully elucidated. In our study, we found targeting VSIG4+ TAMs by VSIG4 deficiency or blockade remarkably limited tumor growth and metastasis, especially those derived from anaplastic thyroid cancer (ATC) and pancreatic cancer, two extremely aggressive types. Moreover, the combination of VSIG4 blockade with a BRAF inhibitor synergistically enhanced anti-tumor activity in ATC-tumor bearing mice. VSIG4 deficiency recovered the antigen presentation (B2m, H2-k1, H2-d1) of TAMs and activated antigen-specific CD8+ T cells by promoting their in vivo proliferation and intratumoral infiltration. Notably, loss of VSIG4 in TAMs significantly reduced the production of lactate and histone H3 lysine 18 lactylation, resulting the decreased transcription of SPP1 mediated by STAT3, which collectively disrupted the cell-cell interactions between TAMs and neutrophils. Further combination of VSIG4 with SPP1 blockade synergistically boosted anti-tumor activity. Overall, our studies demonstrate the epigenetic regulation function of VSIG4 confers on TAMs an alternative pattern, beyond the checkpoint role of VSIG4, to shape the immunosuppressive tumor microenvironment and impair antigen-specific immunity against aggressive cancers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信