Nano-XRF of lung fibrotic tissue reveals unexplored Ca, Zn, S and Fe metabolism: a novel approach to chronic lung diseases.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Bryan Falcones, Maik Kahnt, Ulf Johansson, Barbora Svobodová, Karin A von Wachenfelt, Charlott Brunmark, Göran Dellgren, Linda Elowsson, Karina Thånell, Gunilla Westergren-Thorsson
{"title":"Nano-XRF of lung fibrotic tissue reveals unexplored Ca, Zn, S and Fe metabolism: a novel approach to chronic lung diseases.","authors":"Bryan Falcones, Maik Kahnt, Ulf Johansson, Barbora Svobodová, Karin A von Wachenfelt, Charlott Brunmark, Göran Dellgren, Linda Elowsson, Karina Thånell, Gunilla Westergren-Thorsson","doi":"10.1186/s12964-025-02076-4","DOIUrl":null,"url":null,"abstract":"<p><p>Synchrotron-radiation nano-X-Ray Fluorescence (XRF) is a cutting-edge technique offering high-resolution insights into the elemental composition of biological tissues, shedding light on metabolic processes and element localization within cellular structures. In the context of Idiopathic Pulmonary Fibrosis (IPF), a debilitating lung condition associated with respiratory complications and reduced life expectancy, nano-XRF presents a promising avenue for understanding the disease's intricate pathology. Our developed workflow enables the assessment of elemental composition in both human and rodent fibrotic tissues, providing insights on the interplay between cellular compartments in chronic lung diseases. Our findings demonstrate trace element accumulations associated with anthracosis, a feature observed in IPF. Notably, Zn and Ca clusters approximately 750 nm in size were identified exclusively in IPF samples. While their specific role remains unclear, their presence may be associated with disease-specific processes. Additionally, we observed Fe and S signal colocalization in 650-nm structures within some IPF cells. Fe-S complexes in mitochondria are known to be associated with increased ROS production, suggesting a potential connection to the disease pathology. In contrast, a bleomycin-induced fibrosis rodent model exhibits a different elemental phenotype with low Fe and increased S, Zn, and Ca. Overall, our workflow highlights the effectiveness of synchrotron-based nano-XRF mapping in analyzing the spatial distribution of trace elements within diseased tissue, offering valuable insights into the elemental aspects of IPF and related chronic lung diseases.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"67"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02076-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synchrotron-radiation nano-X-Ray Fluorescence (XRF) is a cutting-edge technique offering high-resolution insights into the elemental composition of biological tissues, shedding light on metabolic processes and element localization within cellular structures. In the context of Idiopathic Pulmonary Fibrosis (IPF), a debilitating lung condition associated with respiratory complications and reduced life expectancy, nano-XRF presents a promising avenue for understanding the disease's intricate pathology. Our developed workflow enables the assessment of elemental composition in both human and rodent fibrotic tissues, providing insights on the interplay between cellular compartments in chronic lung diseases. Our findings demonstrate trace element accumulations associated with anthracosis, a feature observed in IPF. Notably, Zn and Ca clusters approximately 750 nm in size were identified exclusively in IPF samples. While their specific role remains unclear, their presence may be associated with disease-specific processes. Additionally, we observed Fe and S signal colocalization in 650-nm structures within some IPF cells. Fe-S complexes in mitochondria are known to be associated with increased ROS production, suggesting a potential connection to the disease pathology. In contrast, a bleomycin-induced fibrosis rodent model exhibits a different elemental phenotype with low Fe and increased S, Zn, and Ca. Overall, our workflow highlights the effectiveness of synchrotron-based nano-XRF mapping in analyzing the spatial distribution of trace elements within diseased tissue, offering valuable insights into the elemental aspects of IPF and related chronic lung diseases.

肺纤维化组织的纳米 XRF 揭示了尚未探索的钙、锌、硒和铁代谢:一种治疗慢性肺病的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信