Evaluation of allosteric N-methyl-d-aspartate receptor modulation by GluN2A-selective antagonists using pharmacological equilibrium modeling.

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Molecular Pharmacology Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1124/molpharm.124.000975
James S Lotti, Jaron Jones, Jill C Farnsworth, Feng Yi, Fabao Zhao, Frank S Menniti, Robert A Volkmann, Rasmus P Clausen, Kasper B Hansen
{"title":"Evaluation of allosteric N-methyl-d-aspartate receptor modulation by GluN2A-selective antagonists using pharmacological equilibrium modeling.","authors":"James S Lotti, Jaron Jones, Jill C Farnsworth, Feng Yi, Fabao Zhao, Frank S Menniti, Robert A Volkmann, Rasmus P Clausen, Kasper B Hansen","doi":"10.1124/molpharm.124.000975","DOIUrl":null,"url":null,"abstract":"<p><p>N-methyl-d-aspartate (NMDA)-type ionotropic glutamate receptors are critically involved in excitatory neurotransmission and their dysfunction is implicated in many brain disorders. Allosteric modulators with selectivity for specific NMDA receptor subtypes are therefore attractive as therapeutic agents, and sustained drug discovery efforts have resulted in a wide range of new allosteric modulators. However, evaluation of allosteric NMDA receptor modulators is limited by the lack of operational ligand-receptor models to describe modulator binding dissociation constants (K<sub>B</sub>) and effects on agonist binding affinity (α) and efficacy (β). Here, we describe a pharmacological equilibrium model that encapsulates activation and modulation of NMDA receptors, and we apply this model to afford deeper understanding of GluN2A-selective negative allosteric modulators, TCN-201, MPX-004, and MPX-007. We exploit slow negative allosteric modulator unbinding to examine receptors at hemi-equilibrium when fully occupied by agonists and modulators to demonstrate that TCN-201 display weaker binding and negative modulation of glycine binding affinity (K<sub>B</sub> = 42 nM, α = 0.0032) compared with MPX-004 (K<sub>B</sub> = 9.3 nM, α = 0.0018) and MPX-007 (K<sub>B</sub> = 1.1 nM, α = 0.00053). MPX-004 increases agonist efficacy (β = 1.19), whereas TCN-201 (β = 0.76) and MPX-007 (β = 0.82) reduce agonist efficacy. These values describing allosteric modulation of diheteromeric GluN1/2A receptors with 2 modulator binding sites are unchanged in triheteromeric GluN1/2A/2B receptors with a single binding site. This evaluation of NMDA receptor modulation reveals differences between ligand analogs that shape their utility as pharmacological tool compounds and facilitates the design of new modulators with therapeutic potential. SIGNIFICANCE STATEMENT: Detailed understanding of allosteric N-methyl-d-aspartate (NMDA) receptor modulation requires pharmacological methods to quantify modulator binding affinity and the strengths of modulation of agonist binding and efficacy. We describe a generic ligand-receptor model for allosteric NMDA receptor modulation and use this model for the characterization of GluN2A-selective negative allosteric modulators. The model enables quantitative evaluation of a broad range of NMDA receptor modulators and provides opportunities to optimize these modulators by embellishing the interpretation of their structure-activity relationships.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"107 1","pages":"100004"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/molpharm.124.000975","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

N-methyl-d-aspartate (NMDA)-type ionotropic glutamate receptors are critically involved in excitatory neurotransmission and their dysfunction is implicated in many brain disorders. Allosteric modulators with selectivity for specific NMDA receptor subtypes are therefore attractive as therapeutic agents, and sustained drug discovery efforts have resulted in a wide range of new allosteric modulators. However, evaluation of allosteric NMDA receptor modulators is limited by the lack of operational ligand-receptor models to describe modulator binding dissociation constants (KB) and effects on agonist binding affinity (α) and efficacy (β). Here, we describe a pharmacological equilibrium model that encapsulates activation and modulation of NMDA receptors, and we apply this model to afford deeper understanding of GluN2A-selective negative allosteric modulators, TCN-201, MPX-004, and MPX-007. We exploit slow negative allosteric modulator unbinding to examine receptors at hemi-equilibrium when fully occupied by agonists and modulators to demonstrate that TCN-201 display weaker binding and negative modulation of glycine binding affinity (KB = 42 nM, α = 0.0032) compared with MPX-004 (KB = 9.3 nM, α = 0.0018) and MPX-007 (KB = 1.1 nM, α = 0.00053). MPX-004 increases agonist efficacy (β = 1.19), whereas TCN-201 (β = 0.76) and MPX-007 (β = 0.82) reduce agonist efficacy. These values describing allosteric modulation of diheteromeric GluN1/2A receptors with 2 modulator binding sites are unchanged in triheteromeric GluN1/2A/2B receptors with a single binding site. This evaluation of NMDA receptor modulation reveals differences between ligand analogs that shape their utility as pharmacological tool compounds and facilitates the design of new modulators with therapeutic potential. SIGNIFICANCE STATEMENT: Detailed understanding of allosteric N-methyl-d-aspartate (NMDA) receptor modulation requires pharmacological methods to quantify modulator binding affinity and the strengths of modulation of agonist binding and efficacy. We describe a generic ligand-receptor model for allosteric NMDA receptor modulation and use this model for the characterization of GluN2A-selective negative allosteric modulators. The model enables quantitative evaluation of a broad range of NMDA receptor modulators and provides opportunities to optimize these modulators by embellishing the interpretation of their structure-activity relationships.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信