Hee Jeong Kim, Kina Lee, Kiseo Yoo, Jeong Eun Kim, Heeju Kim, Chae-Seok Lim, Young Seok Park, Hyong Kyu Kim
{"title":"Critical Role of Rho Guanine Nucleotide Exchange Factor 4 in Brain Function.","authors":"Hee Jeong Kim, Kina Lee, Kiseo Yoo, Jeong Eun Kim, Heeju Kim, Chae-Seok Lim, Young Seok Park, Hyong Kyu Kim","doi":"10.1007/s12035-025-04734-7","DOIUrl":null,"url":null,"abstract":"<p><p>Although Rho guanine nucleotide exchange factor 4 (Arhgef4) is highly expressed in the brain, its function remains poorly understood. Our previous study showed that Arhgef4 negatively regulates excitatory postsynaptic regional activity. This study investigated the effects of Arhgef4 deletion in postnatal forebrain-specific knockout mice on brain function, synaptic proteins, and behaviors. We generated a knockout mouse with Arhgef4 deleted from the forebrain and analyzed gene expression and protein levels by RT-PCR and western blot. Synaptic function was assessed through electrophysiological recordings, and behavioral tests evaluated memory and anxiety. In these conditional knockout (cKO) mice, we observed a significant decrease in the expression of a 75-kDa brain-enriched isoform of Arhgef4 in the forebrain. In KO mice, pre- and post-synaptic protein levels were unchanged. However, in cultured hippocampal neurons from KO mice, the levels of postsynaptic density protein 95 (PSD-95) in the postsynaptic regions were significantly increased from the pre-mature stage to the fully mature stage during neuronal development. In contrast, the number of dendritic protrusions decreased during the early mature stage of the cultured neurons. Electrophysiological recordings of hippocampal neurons from KO mice showed a significant increase in miniature excitatory postsynaptic currents (mEPSC) frequency. Furthermore, Arhgef4 KO mice exhibited enhanced long-term memory and reduced anxiety-related behaviors. These findings suggest that Arhgef4 plays a role in regulating brain functions such as learning, memory, and anxiety.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04734-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although Rho guanine nucleotide exchange factor 4 (Arhgef4) is highly expressed in the brain, its function remains poorly understood. Our previous study showed that Arhgef4 negatively regulates excitatory postsynaptic regional activity. This study investigated the effects of Arhgef4 deletion in postnatal forebrain-specific knockout mice on brain function, synaptic proteins, and behaviors. We generated a knockout mouse with Arhgef4 deleted from the forebrain and analyzed gene expression and protein levels by RT-PCR and western blot. Synaptic function was assessed through electrophysiological recordings, and behavioral tests evaluated memory and anxiety. In these conditional knockout (cKO) mice, we observed a significant decrease in the expression of a 75-kDa brain-enriched isoform of Arhgef4 in the forebrain. In KO mice, pre- and post-synaptic protein levels were unchanged. However, in cultured hippocampal neurons from KO mice, the levels of postsynaptic density protein 95 (PSD-95) in the postsynaptic regions were significantly increased from the pre-mature stage to the fully mature stage during neuronal development. In contrast, the number of dendritic protrusions decreased during the early mature stage of the cultured neurons. Electrophysiological recordings of hippocampal neurons from KO mice showed a significant increase in miniature excitatory postsynaptic currents (mEPSC) frequency. Furthermore, Arhgef4 KO mice exhibited enhanced long-term memory and reduced anxiety-related behaviors. These findings suggest that Arhgef4 plays a role in regulating brain functions such as learning, memory, and anxiety.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.