{"title":"Characterizing drivers of change in intraoperative cerebral saturation using supervised machine learning.","authors":"Philip J Pries, W Alan C Mutch, Duane J Funk","doi":"10.1007/s10877-025-01265-3","DOIUrl":null,"url":null,"abstract":"<p><p>Regional cerebral oxygen saturation (rSO<sub>2</sub>) is used to monitor cerebral perfusion with emerging evidence that optimization of rSO<sub>2</sub> may improve neurological and non-neurological outcomes. To manipulate rSO<sub>2</sub> an understanding of the variables that drive its behavior is necessary, and this can be accomplished using supervised machine learning. This study aimed to establish a hierarchy by which various hemodynamic and ventilatory variables contribute to intraoperative changes in rSO<sub>2</sub>. A post-hoc analysis 146 patients undergoing high risk surgery. rSO<sub>2</sub> was partitioned into segments with a change of at least 3% points over 5 min. Features from hemodynamic and ventilatory variables were used to train a machine learning classification algorithm (XGBoost) for prediction of association with either up or down-sloping rSO<sub>2</sub>. The classifier was optimized and validated using five-fold cross validation. Feature importance was quantified based on information gain and permutation feature importance. The optimized classifier demonstrated a mean accuracy of 77.1% (SD 8.0%) and a mean area-under-ROC-curve of 0.86 (SD 0.06). The most important features based on information gain were the slope of the associated ETCO<sub>2</sub> signal, the slope of the SPO<sub>2</sub> signal, and the mean of the MAP signal. CO<sub>2</sub> is a significant mediator of changes in rSO<sub>2</sub> in an intraoperative setting, through its established effects on cerebral blood flow. This study furthers our overall understanding of the complex physiologic process that governs cerebral oxygenation by quantifying the hierarchy by which rSO<sub>2</sub> is affected. Clinical Trial Number NCT01838733 (ClinicalTrials.gov).</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-025-01265-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Regional cerebral oxygen saturation (rSO2) is used to monitor cerebral perfusion with emerging evidence that optimization of rSO2 may improve neurological and non-neurological outcomes. To manipulate rSO2 an understanding of the variables that drive its behavior is necessary, and this can be accomplished using supervised machine learning. This study aimed to establish a hierarchy by which various hemodynamic and ventilatory variables contribute to intraoperative changes in rSO2. A post-hoc analysis 146 patients undergoing high risk surgery. rSO2 was partitioned into segments with a change of at least 3% points over 5 min. Features from hemodynamic and ventilatory variables were used to train a machine learning classification algorithm (XGBoost) for prediction of association with either up or down-sloping rSO2. The classifier was optimized and validated using five-fold cross validation. Feature importance was quantified based on information gain and permutation feature importance. The optimized classifier demonstrated a mean accuracy of 77.1% (SD 8.0%) and a mean area-under-ROC-curve of 0.86 (SD 0.06). The most important features based on information gain were the slope of the associated ETCO2 signal, the slope of the SPO2 signal, and the mean of the MAP signal. CO2 is a significant mediator of changes in rSO2 in an intraoperative setting, through its established effects on cerebral blood flow. This study furthers our overall understanding of the complex physiologic process that governs cerebral oxygenation by quantifying the hierarchy by which rSO2 is affected. Clinical Trial Number NCT01838733 (ClinicalTrials.gov).
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.