Association Between Lifestyle at Different Life Periods and Brain Integrity in Older Adults.

IF 7.7 1区 医学 Q1 CLINICAL NEUROLOGY
Neurology Pub Date : 2025-03-11 Epub Date: 2025-02-07 DOI:10.1212/WNL.0000000000213347
Anne-Laure Turpin, Francesca Felisatti, Léa Chauveau, Sacha Haudry, Florence Mézenge, Brigitte Landeau, Denis Vivien, Vincent De La Sayette, Gaël Chételat, Julie Gonneaud
{"title":"Association Between Lifestyle at Different Life Periods and Brain Integrity in Older Adults.","authors":"Anne-Laure Turpin, Francesca Felisatti, Léa Chauveau, Sacha Haudry, Florence Mézenge, Brigitte Landeau, Denis Vivien, Vincent De La Sayette, Gaël Chételat, Julie Gonneaud","doi":"10.1212/WNL.0000000000213347","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Lifestyle behaviors, including engagement in complex mental activities, have been associated with dementia risk and neuroimaging markers of aging and Alzheimer disease. However, the life period(s) at which lifestyle factors have the greatest influence on brain health remains unclear. Our objective was to determine the relative influence of lifestyle (i.e., engagement in complex mental activities) at different life periods on older adults' brain health.</p><p><strong>Methods: </strong>This observational study included community-dwelling cognitively unimpaired seniors (older than 65 years) from the Age-Well randomized controlled trial (Caen, France). All participants completed at baseline the Lifetime of Experiences Questionnaire, assessing engagement in complex mental activities during young adulthood (13-30 years: LEQ-young), midlife (30-65 years: LEQ-midlife), and late-life (older than 65 years: LEQ-late). LEQ scores were divided into specific and non-specific activities. Multiple regressions were conducted including LEQ scores at the 3 life periods (same model) to predict gray matter volume (GMv; structural-MRI), glucose metabolism (fluorodeoxyglucose-PET), perfusion (early-Florbetapir-PET), or amyloid burden (late-Florbetapir-PET), both in AD-signature regions and voxel-wise (significance for voxel-wise analyses: <i>p</i> < 0.005<sub>uncorrected</sub>, k > 100). Correlations between LEQ and neuroimaging outcomes were then compared between (1) life periods and (2) specific and non-specific activities. Analyses were controlled for age and sex.</p><p><strong>Results: </strong>In 135 older adults (mean age = 69.3 years; women = 61.5%), no associations were found within AD-signature regions (all <i>p</i> > 0.25). Voxel-wise analyses revealed no association between LEQ-young and neuroimaging. LEQ-midlife showed stronger voxel-wise associations than the other periods with GMv, notably in the anterior cingulate cortex, and with amyloid burden in the precuneus. These correlations were stronger for the LEQ-midlife specific (i.e., occupation) than the non-specific subscore (GMv: z = 3.25, <i>p</i> < 0.001, 95% CI [0.1292-0.5135]; amyloid: z = -1.88, <i>p</i> < 0.05, 95% CI [-0.3810 to -0.0113]). LEQ-late showed stronger voxel-wise associations than the other periods with perfusion and glucose metabolism in medial frontal regions. The correlation of perfusion with LEQ-late was stronger for non-specific than specific subscore (z = 2.88, <i>p</i> < 0.01, 95% CI [0.0894-0.4606]).</p><p><strong>Discussion: </strong>Lifestyle at different life periods may have complementary benefits on brain health in regions related to reserve/resilience in aging. While past (midlife) engagement could promote resistance against structural/pathologic alterations, current (late-life) engagement could enhance cognitive reserve. Future larger longitudinal studies should explore mechanisms by which lifestyle promotes reserve.</p>","PeriodicalId":19256,"journal":{"name":"Neurology","volume":"104 5","pages":"e213347"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/WNL.0000000000213347","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Lifestyle behaviors, including engagement in complex mental activities, have been associated with dementia risk and neuroimaging markers of aging and Alzheimer disease. However, the life period(s) at which lifestyle factors have the greatest influence on brain health remains unclear. Our objective was to determine the relative influence of lifestyle (i.e., engagement in complex mental activities) at different life periods on older adults' brain health.

Methods: This observational study included community-dwelling cognitively unimpaired seniors (older than 65 years) from the Age-Well randomized controlled trial (Caen, France). All participants completed at baseline the Lifetime of Experiences Questionnaire, assessing engagement in complex mental activities during young adulthood (13-30 years: LEQ-young), midlife (30-65 years: LEQ-midlife), and late-life (older than 65 years: LEQ-late). LEQ scores were divided into specific and non-specific activities. Multiple regressions were conducted including LEQ scores at the 3 life periods (same model) to predict gray matter volume (GMv; structural-MRI), glucose metabolism (fluorodeoxyglucose-PET), perfusion (early-Florbetapir-PET), or amyloid burden (late-Florbetapir-PET), both in AD-signature regions and voxel-wise (significance for voxel-wise analyses: p < 0.005uncorrected, k > 100). Correlations between LEQ and neuroimaging outcomes were then compared between (1) life periods and (2) specific and non-specific activities. Analyses were controlled for age and sex.

Results: In 135 older adults (mean age = 69.3 years; women = 61.5%), no associations were found within AD-signature regions (all p > 0.25). Voxel-wise analyses revealed no association between LEQ-young and neuroimaging. LEQ-midlife showed stronger voxel-wise associations than the other periods with GMv, notably in the anterior cingulate cortex, and with amyloid burden in the precuneus. These correlations were stronger for the LEQ-midlife specific (i.e., occupation) than the non-specific subscore (GMv: z = 3.25, p < 0.001, 95% CI [0.1292-0.5135]; amyloid: z = -1.88, p < 0.05, 95% CI [-0.3810 to -0.0113]). LEQ-late showed stronger voxel-wise associations than the other periods with perfusion and glucose metabolism in medial frontal regions. The correlation of perfusion with LEQ-late was stronger for non-specific than specific subscore (z = 2.88, p < 0.01, 95% CI [0.0894-0.4606]).

Discussion: Lifestyle at different life periods may have complementary benefits on brain health in regions related to reserve/resilience in aging. While past (midlife) engagement could promote resistance against structural/pathologic alterations, current (late-life) engagement could enhance cognitive reserve. Future larger longitudinal studies should explore mechanisms by which lifestyle promotes reserve.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurology
Neurology 医学-临床神经学
CiteScore
12.20
自引率
4.00%
发文量
1973
审稿时长
2-3 weeks
期刊介绍: Neurology, the official journal of the American Academy of Neurology, aspires to be the premier peer-reviewed journal for clinical neurology research. Its mission is to publish exceptional peer-reviewed original research articles, editorials, and reviews to improve patient care, education, clinical research, and professionalism in neurology. As the leading clinical neurology journal worldwide, Neurology targets physicians specializing in nervous system diseases and conditions. It aims to advance the field by presenting new basic and clinical research that influences neurological practice. The journal is a leading source of cutting-edge, peer-reviewed information for the neurology community worldwide. Editorial content includes Research, Clinical/Scientific Notes, Views, Historical Neurology, NeuroImages, Humanities, Letters, and position papers from the American Academy of Neurology. The online version is considered the definitive version, encompassing all available content. Neurology is indexed in prestigious databases such as MEDLINE/PubMed, Embase, Scopus, Biological Abstracts®, PsycINFO®, Current Contents®, Web of Science®, CrossRef, and Google Scholar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信