Predicting hematoma expansion after intracerebral hemorrhage: a comparison of clinician prediction with deep learning radiomics models.

IF 3.1 3区 医学 Q2 CLINICAL NEUROLOGY
Boyang Yu, Kara R Melmed, Jennifer Frontera, Weicheng Zhu, Haoxu Huang, Adnan I Qureshi, Abigail Maggard, Michael Steinhof, Lindsey Kuohn, Arooshi Kumar, Elisa R Berson, Anh T Tran, Seyedmehdi Payabvash, Natasha Ironside, Benjamin Brush, Seena Dehkharghani, Narges Razavian, Rajesh Ranganath
{"title":"Predicting hematoma expansion after intracerebral hemorrhage: a comparison of clinician prediction with deep learning radiomics models.","authors":"Boyang Yu, Kara R Melmed, Jennifer Frontera, Weicheng Zhu, Haoxu Huang, Adnan I Qureshi, Abigail Maggard, Michael Steinhof, Lindsey Kuohn, Arooshi Kumar, Elisa R Berson, Anh T Tran, Seyedmehdi Payabvash, Natasha Ironside, Benjamin Brush, Seena Dehkharghani, Narges Razavian, Rajesh Ranganath","doi":"10.1007/s12028-025-02214-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early prediction of hematoma expansion (HE) following nontraumatic intracerebral hemorrhage (ICH) may inform preemptive therapeutic interventions. We sought to identify how accurately machine learning (ML) radiomics models predict HE compared with expert clinicians using head computed tomography (HCT).</p><p><strong>Methods: </strong>We used data from 900 study participants with ICH enrolled in the Antihypertensive Treatment of Acute Cerebral Hemorrhage 2 Study. ML models were developed using baseline HCT images, as well as admission clinical data in a training cohort (n = 621), and their performance was evaluated in an independent test cohort (n = 279) to predict HE (defined as HE by 33% or > 6 mL at 24 h). We simultaneously surveyed expert clinicians and asked them to predict HE using the same initial HCT images and clinical data. Area under the receiver operating characteristic curve (AUC) were compared between clinician predictions, ML models using radiomic data only (a random forest classifier and a deep learning imaging model) and ML models using both radiomic and clinical data (three random forest classifier models using different feature combinations). Kappa values comparing interrater reliability among expert clinicians were calculated. The best performing model was compared with clinical predication.</p><p><strong>Results: </strong>The AUC for expert clinician prediction of HE was 0.591, with a kappa of 0.156 for interrater variability, compared with ML models using radiomic data only (a deep learning model using image input, AUC 0.680) and using both radiomic and clinical data (a random forest model, AUC 0.677). The intraclass correlation coefficient for clinical judgment and the best performing ML model was 0.47 (95% confidence interval 0.23-0.75).</p><p><strong>Conclusions: </strong>We introduced supervised ML algorithms demonstrating that HE prediction may outperform practicing clinicians. Despite overall moderate AUCs, our results set a new relative benchmark for performance in these tasks that even expert clinicians find challenging. These results emphasize the need for continued improvements and further enhanced clinical decision support to optimally manage patients with ICH.</p>","PeriodicalId":19118,"journal":{"name":"Neurocritical Care","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocritical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12028-025-02214-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Early prediction of hematoma expansion (HE) following nontraumatic intracerebral hemorrhage (ICH) may inform preemptive therapeutic interventions. We sought to identify how accurately machine learning (ML) radiomics models predict HE compared with expert clinicians using head computed tomography (HCT).

Methods: We used data from 900 study participants with ICH enrolled in the Antihypertensive Treatment of Acute Cerebral Hemorrhage 2 Study. ML models were developed using baseline HCT images, as well as admission clinical data in a training cohort (n = 621), and their performance was evaluated in an independent test cohort (n = 279) to predict HE (defined as HE by 33% or > 6 mL at 24 h). We simultaneously surveyed expert clinicians and asked them to predict HE using the same initial HCT images and clinical data. Area under the receiver operating characteristic curve (AUC) were compared between clinician predictions, ML models using radiomic data only (a random forest classifier and a deep learning imaging model) and ML models using both radiomic and clinical data (three random forest classifier models using different feature combinations). Kappa values comparing interrater reliability among expert clinicians were calculated. The best performing model was compared with clinical predication.

Results: The AUC for expert clinician prediction of HE was 0.591, with a kappa of 0.156 for interrater variability, compared with ML models using radiomic data only (a deep learning model using image input, AUC 0.680) and using both radiomic and clinical data (a random forest model, AUC 0.677). The intraclass correlation coefficient for clinical judgment and the best performing ML model was 0.47 (95% confidence interval 0.23-0.75).

Conclusions: We introduced supervised ML algorithms demonstrating that HE prediction may outperform practicing clinicians. Despite overall moderate AUCs, our results set a new relative benchmark for performance in these tasks that even expert clinicians find challenging. These results emphasize the need for continued improvements and further enhanced clinical decision support to optimally manage patients with ICH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocritical Care
Neurocritical Care 医学-临床神经学
CiteScore
7.40
自引率
8.60%
发文量
221
审稿时长
4-8 weeks
期刊介绍: Neurocritical Care is a peer reviewed scientific publication whose major goal is to disseminate new knowledge on all aspects of acute neurological care. It is directed towards neurosurgeons, neuro-intensivists, neurologists, anesthesiologists, emergency physicians, and critical care nurses treating patients with urgent neurologic disorders. These are conditions that may potentially evolve rapidly and could need immediate medical or surgical intervention. Neurocritical Care provides a comprehensive overview of current developments in intensive care neurology, neurosurgery and neuroanesthesia and includes information about new therapeutic avenues and technological innovations. Neurocritical Care is the official journal of the Neurocritical Care Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信