Imaging flow cytometry-based cellular screening elucidates pathophysiology in individuals with Variants of Uncertain Significance.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Irena Josephina Johanna Muffels, Hans R Waterham, Giuseppina D'Alessandro, Guido Zagnoli-Vieira, Michael Sacher, Dirk J Lefeber, Celine Van der Vinne, Chaim M Roifman, Koen L I Gassen, Holger Rehmann, Desiree Y Van Haaften-Visser, Edward S S Nieuwenhuis, Stephen P Jackson, Sabine A Fuchs, Femke Wijk, Peter van Hasselt
{"title":"Imaging flow cytometry-based cellular screening elucidates pathophysiology in individuals with Variants of Uncertain Significance.","authors":"Irena Josephina Johanna Muffels, Hans R Waterham, Giuseppina D'Alessandro, Guido Zagnoli-Vieira, Michael Sacher, Dirk J Lefeber, Celine Van der Vinne, Chaim M Roifman, Koen L I Gassen, Holger Rehmann, Desiree Y Van Haaften-Visser, Edward S S Nieuwenhuis, Stephen P Jackson, Sabine A Fuchs, Femke Wijk, Peter van Hasselt","doi":"10.1186/s13073-025-01433-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deciphering variants of uncertain significance (VUS) represents a major diagnostic challenge, partially due to the lack of easy-to-use and versatile cellular readouts that aid the interpretation of pathogenicity and pathophysiology. To address this challenge, we propose a high-throughput screening of cellular functionality through an imaging flow cytometry (IFC)-based platform.</p><p><strong>Methods: </strong>Six assays to evaluate autophagic-, lysosomal-, Golgi- health, mitochondrial function, ER stress, and NF-κβ activity were developed in fibroblasts. Assay sensitivity was verified with compounds (N = 5) and positive control patients (N = 6). Eight healthy controls and 20 individuals with VUS were screened.</p><p><strong>Results: </strong>All molecular compounds and positive controls showed significant changes on their cognate assays, confirming assay sensitivity. Simultaneous screening of positive control patients on all six assays revealed distinct phenotypic profiles. In addition, individuals with VUS(es) in well-known disease genes showed distinct - but similar-phenotypic profiles compared to patients with pathogenic variants in the same gene.. For all individuals with VUSes in Genes of Uncertain Significance (GUS), we found one or more of six assays were significantly altered. Broadening the screening to an untargeted approach led to the identification of two clusters that allowed for the recognition of altered cell cycle dynamics and DNA damage repair defects. Experimental follow-up of the 'DNA damage repair defect cluster' led to the discovery of highly specific defects in top2cc release from double-strand DNA breaks in one of these individuals, harboring a VUS in the RAD54L2 gene.</p><p><strong>Conclusions: </strong>Our high-throughput IFC-based platform simplifies the process of identifying VUS pathogenicity through six assays and allows for the recognition of useful pathophysiological markers that structure follow-up experiments, thereby representing a novel valuable tool for precise functional diagnostics in genomics.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"12"},"PeriodicalIF":10.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01433-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Deciphering variants of uncertain significance (VUS) represents a major diagnostic challenge, partially due to the lack of easy-to-use and versatile cellular readouts that aid the interpretation of pathogenicity and pathophysiology. To address this challenge, we propose a high-throughput screening of cellular functionality through an imaging flow cytometry (IFC)-based platform.

Methods: Six assays to evaluate autophagic-, lysosomal-, Golgi- health, mitochondrial function, ER stress, and NF-κβ activity were developed in fibroblasts. Assay sensitivity was verified with compounds (N = 5) and positive control patients (N = 6). Eight healthy controls and 20 individuals with VUS were screened.

Results: All molecular compounds and positive controls showed significant changes on their cognate assays, confirming assay sensitivity. Simultaneous screening of positive control patients on all six assays revealed distinct phenotypic profiles. In addition, individuals with VUS(es) in well-known disease genes showed distinct - but similar-phenotypic profiles compared to patients with pathogenic variants in the same gene.. For all individuals with VUSes in Genes of Uncertain Significance (GUS), we found one or more of six assays were significantly altered. Broadening the screening to an untargeted approach led to the identification of two clusters that allowed for the recognition of altered cell cycle dynamics and DNA damage repair defects. Experimental follow-up of the 'DNA damage repair defect cluster' led to the discovery of highly specific defects in top2cc release from double-strand DNA breaks in one of these individuals, harboring a VUS in the RAD54L2 gene.

Conclusions: Our high-throughput IFC-based platform simplifies the process of identifying VUS pathogenicity through six assays and allows for the recognition of useful pathophysiological markers that structure follow-up experiments, thereby representing a novel valuable tool for precise functional diagnostics in genomics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信