Inhibition of TFF3 synergizes with c-MET inhibitors to decrease the CSC-like phenotype and metastatic burden in ER+HER2+ mammary carcinoma.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Chuyu He, Xuejuan Wang, Yi-Shiou Chiou, Basappa Basappa, Tao Zhu, Vijay Pandey, Peter E Lobie
{"title":"Inhibition of TFF3 synergizes with c-MET inhibitors to decrease the CSC-like phenotype and metastatic burden in ER+HER2+ mammary carcinoma.","authors":"Chuyu He, Xuejuan Wang, Yi-Shiou Chiou, Basappa Basappa, Tao Zhu, Vijay Pandey, Peter E Lobie","doi":"10.1038/s41419-025-07387-5","DOIUrl":null,"url":null,"abstract":"<p><p>The interaction between HER2 and ERα signaling pathways contributes to resistance to anti-estrogen and HER2-targeted therapies, presenting substantial treatment challenges in ER-positive (ER+) HER2-positive (HER2+) mammary carcinoma (MC). Trefoil Factor-3 (TFF3) has been reported to mediate resistance to both anti-estrogen and anti-HER2 targeted therapies in ER+ and ER+HER2+ MC, respectively. Herein, the function and mechanism of TFF3 in ER+HER2+ MC were delineated; and novel combinatorial therapeutic strategies were identified. Elevated expression of TFF3 promoted the oncogenicity of ER+HER2+ MC cells, including enhanced cell proliferation, survival, anchorage-independent growth, 3D growth, cancer stem cell-like (CSC-like) phenotype, migration, invasion, and xenograft growth. Targeting TFF3 with an interfering RNA plasmid or a small-molecule inhibitor (AMPC) inhibited these oncogenic characteristics, highlighting the therapeutic potential of targeting TFF3 in ER+HER2+ MC. Furthermore, a high-throughput combinatorial anti-cancer compound library screening revealed that AMPC preferentially synergized with receptor tyrosine kinase c-MET inhibitors (c-METis) to reduce cell survival and the CSC-like phenotype. The combination of AMPC and c-METis also synergistically suppressed the in vivo growth of ER+HER2+ MC cell-derived xenografts and abrogated lung metastasis. Mechanistically, TFF3 was observed to activate c-MET signaling through a positive-feedback loop to enhance the CSC-like phenotype of ER+HER2+ MC. Therefore, proof of concept is provided herein that antagonizing of TFF3 is a promising therapeutic strategy in combination with c-MET inhibition for the treatment of ER+HER2+ MC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"76"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07387-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between HER2 and ERα signaling pathways contributes to resistance to anti-estrogen and HER2-targeted therapies, presenting substantial treatment challenges in ER-positive (ER+) HER2-positive (HER2+) mammary carcinoma (MC). Trefoil Factor-3 (TFF3) has been reported to mediate resistance to both anti-estrogen and anti-HER2 targeted therapies in ER+ and ER+HER2+ MC, respectively. Herein, the function and mechanism of TFF3 in ER+HER2+ MC were delineated; and novel combinatorial therapeutic strategies were identified. Elevated expression of TFF3 promoted the oncogenicity of ER+HER2+ MC cells, including enhanced cell proliferation, survival, anchorage-independent growth, 3D growth, cancer stem cell-like (CSC-like) phenotype, migration, invasion, and xenograft growth. Targeting TFF3 with an interfering RNA plasmid or a small-molecule inhibitor (AMPC) inhibited these oncogenic characteristics, highlighting the therapeutic potential of targeting TFF3 in ER+HER2+ MC. Furthermore, a high-throughput combinatorial anti-cancer compound library screening revealed that AMPC preferentially synergized with receptor tyrosine kinase c-MET inhibitors (c-METis) to reduce cell survival and the CSC-like phenotype. The combination of AMPC and c-METis also synergistically suppressed the in vivo growth of ER+HER2+ MC cell-derived xenografts and abrogated lung metastasis. Mechanistically, TFF3 was observed to activate c-MET signaling through a positive-feedback loop to enhance the CSC-like phenotype of ER+HER2+ MC. Therefore, proof of concept is provided herein that antagonizing of TFF3 is a promising therapeutic strategy in combination with c-MET inhibition for the treatment of ER+HER2+ MC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信