Jiaheng Zhang, Vasco F. Batista, René Hübner, Henrik Karring, Changzhu Wu
{"title":"Host–guest chemistry on living cells enabling recyclable photobiocatalytic cascade","authors":"Jiaheng Zhang, Vasco F. Batista, René Hübner, Henrik Karring, Changzhu Wu","doi":"10.1039/d4sc06508e","DOIUrl":null,"url":null,"abstract":"Combining chemical and whole-cell catalysts enables sustainable chemoenzymatic cascade reactions. However, their traditional combination faces challenges in catalyst recycling and maintaining cell viability. Here, we introduce a supramolecular host–guest strategy that efficiently attaches photocatalysts to bacterial cells, facilitating recyclable photobiocatalysis. This method involves attaching a cationic polyethylenimine (PEI) polymer, functionalized with β-cyclodextrin (β-CD), to <em>E. coli</em> cells. The polymer attachment is biocompatible and protective, safeguarding the cells from harsh conditions such as UV radiation and organic solvents, without causing cell death. Additionally, the presence of β-CD imparts a plug-and-play capability to the cells, enabling the straightforward integration of guest photocatalysts – specifically anthraquinone – onto the cell surface through host–guest interactions. This effective combination of cellular and chemical catalysts promotes efficient photobiocatalytic cascades and supports the photocatalyst's recycling and reuse. This supramolecular system thus represents a promising platform for advancing photobiocatalysis in cascade synthesis.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"21 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06508e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Combining chemical and whole-cell catalysts enables sustainable chemoenzymatic cascade reactions. However, their traditional combination faces challenges in catalyst recycling and maintaining cell viability. Here, we introduce a supramolecular host–guest strategy that efficiently attaches photocatalysts to bacterial cells, facilitating recyclable photobiocatalysis. This method involves attaching a cationic polyethylenimine (PEI) polymer, functionalized with β-cyclodextrin (β-CD), to E. coli cells. The polymer attachment is biocompatible and protective, safeguarding the cells from harsh conditions such as UV radiation and organic solvents, without causing cell death. Additionally, the presence of β-CD imparts a plug-and-play capability to the cells, enabling the straightforward integration of guest photocatalysts – specifically anthraquinone – onto the cell surface through host–guest interactions. This effective combination of cellular and chemical catalysts promotes efficient photobiocatalytic cascades and supports the photocatalyst's recycling and reuse. This supramolecular system thus represents a promising platform for advancing photobiocatalysis in cascade synthesis.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.