Qinchen Wu;Jinping Sun;Bin Yang;Tao Shan;Yanping Wang
{"title":"Tracking Multiple Resolvable Group Targets With Coordinated Motion via Labeled Random Finite Sets","authors":"Qinchen Wu;Jinping Sun;Bin Yang;Tao Shan;Yanping Wang","doi":"10.1109/TSP.2025.3539605","DOIUrl":null,"url":null,"abstract":"The standard multi-target transition density assumes that, conditional on the current multi-target state, targets survive and move independently of each other. Although this assumption is followed by most multi-target tracking (MTT) algorithms, it may not be applicable for tracking group targets exhibiting coordinated motion. This paper presents a principled Bayesian solution to tracking multiple resolvable group targets in the labeled random finite set framework. The transition densities of group targets with collective behavior are derived both for single-group and multi-group. For single-group, the transition density is characterized by a general labeled multi-target density and then approximated by the closest general labeled multi-Bernoulli (GLMB) density in terms of Kullback-Leibler divergence. For multi-group, we augment the group structure to multi-target states and propose a multiple group structure transition model (MGSTM) to recursively infer it. Additionally, the conjugation of the structure augmented multi-group multi-target density is also proved. An efficient implementation of multi-group multi-target tracker, named MGSTM-LMB filter, and its Gaussian mixture form are devised which preserves the first-order moment of multi-group multi-target density in recursive propagation. Numerical simulation results demonstrate the capability of the proposed MGSTM-LMB filter in multi-group scenes.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1018-1033"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10877928/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The standard multi-target transition density assumes that, conditional on the current multi-target state, targets survive and move independently of each other. Although this assumption is followed by most multi-target tracking (MTT) algorithms, it may not be applicable for tracking group targets exhibiting coordinated motion. This paper presents a principled Bayesian solution to tracking multiple resolvable group targets in the labeled random finite set framework. The transition densities of group targets with collective behavior are derived both for single-group and multi-group. For single-group, the transition density is characterized by a general labeled multi-target density and then approximated by the closest general labeled multi-Bernoulli (GLMB) density in terms of Kullback-Leibler divergence. For multi-group, we augment the group structure to multi-target states and propose a multiple group structure transition model (MGSTM) to recursively infer it. Additionally, the conjugation of the structure augmented multi-group multi-target density is also proved. An efficient implementation of multi-group multi-target tracker, named MGSTM-LMB filter, and its Gaussian mixture form are devised which preserves the first-order moment of multi-group multi-target density in recursive propagation. Numerical simulation results demonstrate the capability of the proposed MGSTM-LMB filter in multi-group scenes.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.