C2P-Net: Comprehensive Depth Map to Planar Depth Conversion for Room Layout Estimation

IF 18.6
Weidong Zhang;Mengjie Zhou;Jiyu Cheng;Ying Liu;Wei Zhang
{"title":"C2P-Net: Comprehensive Depth Map to Planar Depth Conversion for Room Layout Estimation","authors":"Weidong Zhang;Mengjie Zhou;Jiyu Cheng;Ying Liu;Wei Zhang","doi":"10.1109/TPAMI.2025.3540084","DOIUrl":null,"url":null,"abstract":"Room layout estimation seeks to infer the overall spatial configuration of indoor scenes using perspective or panoramic images. As the layout is determined by the dominant indoor planes, this problem inherently requires the reconstruction of these planes. Some studies reconstruct indoor planes from perspective images by learning pixel-level or instance-level plane parameters. However, directly learning these parameters has the problems of susceptibility to occlusions and position dependency. In this paper, we introduce the Comprehensive depth map to Planar depth (C2P) conversion, which reformulates planar depth reconstruction into the prediction of a comprehensive depth map and planar visibility confidence. Based on the parametric representation of planar depth we propose, the C2P conversion is applicable to both panoramic and perspective images. Accordingly, we present an effective framework for room layout estimation that jointly learns the comprehensive depth map and planar visibility confidence. Due to the differentiability of the C2P conversion, our network autonomously learns planar visibility confidence by constraining the estimated plane parameters and reconstructed planar depth map. We further propose a novel approach for 3D layout generation through sequential planar depth map integration. Experimental results demonstrate the superiority of our method across all evaluated panoramic and perspective datasets.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 7","pages":"5350-5367"},"PeriodicalIF":18.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10878466/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Room layout estimation seeks to infer the overall spatial configuration of indoor scenes using perspective or panoramic images. As the layout is determined by the dominant indoor planes, this problem inherently requires the reconstruction of these planes. Some studies reconstruct indoor planes from perspective images by learning pixel-level or instance-level plane parameters. However, directly learning these parameters has the problems of susceptibility to occlusions and position dependency. In this paper, we introduce the Comprehensive depth map to Planar depth (C2P) conversion, which reformulates planar depth reconstruction into the prediction of a comprehensive depth map and planar visibility confidence. Based on the parametric representation of planar depth we propose, the C2P conversion is applicable to both panoramic and perspective images. Accordingly, we present an effective framework for room layout estimation that jointly learns the comprehensive depth map and planar visibility confidence. Due to the differentiability of the C2P conversion, our network autonomously learns planar visibility confidence by constraining the estimated plane parameters and reconstructed planar depth map. We further propose a novel approach for 3D layout generation through sequential planar depth map integration. Experimental results demonstrate the superiority of our method across all evaluated panoramic and perspective datasets.
C2P-Net:用于房间布局估计的综合深度图到平面深度的转换
房间布局估计试图通过透视或全景图像推断室内场景的整体空间配置。由于布局是由室内的主要平面决定的,这个问题本质上需要对这些平面进行重建。一些研究通过学习像素级或实例级平面参数,从透视图像重建室内平面。然而,直接学习这些参数存在易受咬合和位置依赖的问题。本文引入了综合深度图到平面深度(C2P)的转换,将平面深度重建重新定义为综合深度图和平面可见性置信度的预测。基于平面深度的参数化表示,C2P转换既适用于全景图像,也适用于透视图像。在此基础上,提出了一种综合深度图和平面可见置信度共同学习的房间布局估计框架。由于C2P转换的可微性,我们的网络通过约束估计的平面参数和重建的平面深度图来自主学习平面可见性置信度。我们进一步提出了一种通过顺序平面深度图集成生成三维布局的新方法。实验结果证明了我们的方法在所有评估的全景和透视数据集上的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信