Local antibiotic delivery: Recent basic and translational science insights in orthopedics.

Bone Pub Date : 2025-02-04 DOI:10.1016/j.bone.2025.117416
Amir Human Hoveidaei, Seyedarad Mosalamiaghili, Amirhosein Sabaghian, Sina Hajiaghajani, Ali Soltani Farsani, Mahdi Sahebi, Mohammad Poursalehian, Basilia Onyinyechukwu Nwankwo, Janet D Conway
{"title":"Local antibiotic delivery: Recent basic and translational science insights in orthopedics.","authors":"Amir Human Hoveidaei, Seyedarad Mosalamiaghili, Amirhosein Sabaghian, Sina Hajiaghajani, Ali Soltani Farsani, Mahdi Sahebi, Mohammad Poursalehian, Basilia Onyinyechukwu Nwankwo, Janet D Conway","doi":"10.1016/j.bone.2025.117416","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infections remain a significant challenge in orthopedic settings despite advancements in preventive measures. Antibiotics are the primary defense against infections, but optimal delivery methods to the infection site are still being investigated. This review aims to examine existing approaches for local drug delivery from a basic science perspective.</p><p><strong>Recent findings: </strong>Achieving adequate antibiotic concentration at the infection site is challenging due to compromised vasculature in ischemic conditions. Local administration methods, including antibiotic-loaded carriers such as impregnated bone grafts and various bone substitutes, are being explored as alternatives to systemic antibiotic use.</p><p><strong>Summary: </strong>Various materials, including polymethyl methacrylate (PMMA), hydroxyapatite, calcium phosphate/sulfate, bone glass, and hydrogel, are being investigated for local antibiotic delivery. Some of these materials possess inherent antibacterial properties due to their chemical interactions. The selection of appropriate antibiotics, their dosage, release kinetics from the carrier material, physical behavior of the material/graft, and biocompatibility are key areas for further investigation in basic science research.</p>","PeriodicalId":93913,"journal":{"name":"Bone","volume":" ","pages":"117416"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bone.2025.117416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Infections remain a significant challenge in orthopedic settings despite advancements in preventive measures. Antibiotics are the primary defense against infections, but optimal delivery methods to the infection site are still being investigated. This review aims to examine existing approaches for local drug delivery from a basic science perspective.

Recent findings: Achieving adequate antibiotic concentration at the infection site is challenging due to compromised vasculature in ischemic conditions. Local administration methods, including antibiotic-loaded carriers such as impregnated bone grafts and various bone substitutes, are being explored as alternatives to systemic antibiotic use.

Summary: Various materials, including polymethyl methacrylate (PMMA), hydroxyapatite, calcium phosphate/sulfate, bone glass, and hydrogel, are being investigated for local antibiotic delivery. Some of these materials possess inherent antibacterial properties due to their chemical interactions. The selection of appropriate antibiotics, their dosage, release kinetics from the carrier material, physical behavior of the material/graft, and biocompatibility are key areas for further investigation in basic science research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信