Cristiano Muzzi, Ronald Santiago Cortes, Devendra Singh Bhakuni, Asja Jelić, Andrea Gambassi, Marcello Dalmonte, Roberto Verdel
{"title":"Principal component analysis of absorbing state phase transitions.","authors":"Cristiano Muzzi, Ronald Santiago Cortes, Devendra Singh Bhakuni, Asja Jelić, Andrea Gambassi, Marcello Dalmonte, Roberto Verdel","doi":"10.1103/PhysRevE.110.064121","DOIUrl":null,"url":null,"abstract":"<p><p>We perform a principal component analysis (PCA) of two one-dimensional lattice models belonging to distinct nonequilibrium universality classes-directed bond percolation and branching and annihilating random walks with an even number of offspring. We find that the uncentered PCA of data sets storing various system's configurations can be successfully used to determine the critical properties of these nonequilibrium phase transitions. In particular, in both cases, we obtain good estimates of the critical point and the dynamical critical exponent of the models. For directed bond percolation, we are furthermore able to extract critical exponents associated with the correlation length and the order parameter. We discuss the relation of our analysis with low-rank approximations of data sets.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6-1","pages":"064121"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.064121","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We perform a principal component analysis (PCA) of two one-dimensional lattice models belonging to distinct nonequilibrium universality classes-directed bond percolation and branching and annihilating random walks with an even number of offspring. We find that the uncentered PCA of data sets storing various system's configurations can be successfully used to determine the critical properties of these nonequilibrium phase transitions. In particular, in both cases, we obtain good estimates of the critical point and the dynamical critical exponent of the models. For directed bond percolation, we are furthermore able to extract critical exponents associated with the correlation length and the order parameter. We discuss the relation of our analysis with low-rank approximations of data sets.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.