Run-and-tumble particle with saturating rates.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Kavita Jain, Sakuntala Chatterjee
{"title":"Run-and-tumble particle with saturating rates.","authors":"Kavita Jain, Sakuntala Chatterjee","doi":"10.1103/PhysRevE.110.064110","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a run-and-tumble particle whose speed and tumbling rate are space dependent on an infinite line. Unlike most of the previous work on such models, here we make the physical assumption that at large distances, these rates saturate to a constant. For our choice of rate functions, we show that a stationary state exists, and the exact steady-state distribution decays exponentially or faster and can be unimodal or bimodal. The effect of boundedness of rates is seen in the mean-squared displacement of the particle that displays qualitative features different from those observed in the previous studies where it approaches the stationary-state value monotonically in time; in contrast, here we find that if the initial position of the particle is sufficiently far from the origin, then the variance in its position either varies nonmonotonically or plateaus before reaching the stationary state. These results are captured quantitatively by the exact solution of the Green's function when the particle has uniform speed but the tumbling rates change as a step function in space; the insights provided by this limiting case are found to be consistent with the numerical results for the general model.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6-1","pages":"064110"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.064110","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a run-and-tumble particle whose speed and tumbling rate are space dependent on an infinite line. Unlike most of the previous work on such models, here we make the physical assumption that at large distances, these rates saturate to a constant. For our choice of rate functions, we show that a stationary state exists, and the exact steady-state distribution decays exponentially or faster and can be unimodal or bimodal. The effect of boundedness of rates is seen in the mean-squared displacement of the particle that displays qualitative features different from those observed in the previous studies where it approaches the stationary-state value monotonically in time; in contrast, here we find that if the initial position of the particle is sufficiently far from the origin, then the variance in its position either varies nonmonotonically or plateaus before reaching the stationary state. These results are captured quantitatively by the exact solution of the Green's function when the particle has uniform speed but the tumbling rates change as a step function in space; the insights provided by this limiting case are found to be consistent with the numerical results for the general model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信