{"title":"Robustness and classical proxy of entanglement in variants of quantum walks.","authors":"Christopher Mastandrea, Chih-Chun Chien","doi":"10.1103/PhysRevE.110.064124","DOIUrl":null,"url":null,"abstract":"<p><p>A quantum walk (QW) utilizes its internal quantum states to decide the displacement, thereby introducing single-particle entanglement between the internal and positional degrees of freedom. By simulating three variants of QWs with the conventional, symmetric, and split-step translation operators with or without classical randomness in the coin operator, we show the entanglement is robust against both time- and spatially dependent randomness, which can cause localization transitions of QWs. We propose a classical quantity called overlap, which literally measures the overlap between the probability distributions of the internal states as a proxy of entanglement. The overlap is associated with the off-diagonal terms of the reduced density matrix in the internal space, which then reflects its purity. Therefore, the overlap captures the inverse behavior of the entanglement entropy in most cases. We test the limitation of the classical proxy by constructing a special case with high population imbalance between the internal states to blind the overlap. Possible implications and experimental measurements are also discussed.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6-1","pages":"064124"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.064124","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
A quantum walk (QW) utilizes its internal quantum states to decide the displacement, thereby introducing single-particle entanglement between the internal and positional degrees of freedom. By simulating three variants of QWs with the conventional, symmetric, and split-step translation operators with or without classical randomness in the coin operator, we show the entanglement is robust against both time- and spatially dependent randomness, which can cause localization transitions of QWs. We propose a classical quantity called overlap, which literally measures the overlap between the probability distributions of the internal states as a proxy of entanglement. The overlap is associated with the off-diagonal terms of the reduced density matrix in the internal space, which then reflects its purity. Therefore, the overlap captures the inverse behavior of the entanglement entropy in most cases. We test the limitation of the classical proxy by constructing a special case with high population imbalance between the internal states to blind the overlap. Possible implications and experimental measurements are also discussed.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.