Personalized Jargon Identification for Enhanced Interdisciplinary Communication.

Yue Guo, Joseph Chee Chang, Maria Antoniak, Erin Bransom, Trevor Cohen, Lucy Lu Wang, Tal August
{"title":"Personalized Jargon Identification for Enhanced Interdisciplinary Communication.","authors":"Yue Guo, Joseph Chee Chang, Maria Antoniak, Erin Bransom, Trevor Cohen, Lucy Lu Wang, Tal August","doi":"10.18653/v1/2024.naacl-long.255","DOIUrl":null,"url":null,"abstract":"<p><p>Scientific jargon can confuse researchers when they read materials from other domains. Identifying and translating jargon for individual researchers could speed up research, but current methods of jargon identification mainly use corpus-level familiarity indicators rather than modeling researcher-specific needs, which can vary greatly based on each researcher's background. We collect a dataset of over 10K term familiarity annotations from 11 computer science researchers for terms drawn from 100 paper abstracts. Analysis of this data reveals that jargon familiarity and information needs vary widely across annotators, even within the same sub-domain (e.g., NLP). We investigate features representing domain, subdomain, and individual knowledge to predict individual jargon familiarity. We compare supervised and prompt-based approaches, finding that prompt-based methods using information about the individual researcher (e.g., personal publications, self-defined subfield of research) yield the highest accuracy, though the task remains difficult and supervised approaches have lower false positive rates. This research offers insights into features and methods for the novel task of integrating personal data into scientific jargon identification.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2024 ","pages":"4535-4550"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2024.naacl-long.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific jargon can confuse researchers when they read materials from other domains. Identifying and translating jargon for individual researchers could speed up research, but current methods of jargon identification mainly use corpus-level familiarity indicators rather than modeling researcher-specific needs, which can vary greatly based on each researcher's background. We collect a dataset of over 10K term familiarity annotations from 11 computer science researchers for terms drawn from 100 paper abstracts. Analysis of this data reveals that jargon familiarity and information needs vary widely across annotators, even within the same sub-domain (e.g., NLP). We investigate features representing domain, subdomain, and individual knowledge to predict individual jargon familiarity. We compare supervised and prompt-based approaches, finding that prompt-based methods using information about the individual researcher (e.g., personal publications, self-defined subfield of research) yield the highest accuracy, though the task remains difficult and supervised approaches have lower false positive rates. This research offers insights into features and methods for the novel task of integrating personal data into scientific jargon identification.

个性化术语识别促进跨学科交流。
当研究人员阅读其他领域的材料时,科学术语会让他们感到困惑。为研究人员识别和翻译专业术语可以加快研究速度,但目前的专业术语识别方法主要使用语料库级别的熟悉度指标,而不是建模研究人员的特定需求,这可能会因研究人员的背景而有很大差异。我们收集了来自11位计算机科学研究人员的超过10K个术语熟悉度注释的数据集,这些术语来自100篇论文摘要。对这些数据的分析表明,不同的注释者对术语的熟悉程度和信息需求差异很大,甚至在同一子领域(例如,NLP)中也是如此。我们研究了代表领域、子领域和个人知识的特征,以预测个人术语的熟悉程度。我们比较了监督方法和基于提示的方法,发现基于提示的方法使用关于个体研究人员的信息(例如,个人出版物,自定义的研究子领域)产生最高的准确性,尽管任务仍然困难,监督方法的假阳性率较低。本研究为将个人数据整合到科学术语识别中的新任务提供了特征和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信