Accuracy and clinical effectiveness of risk prediction tools for pressure injury occurrence: An umbrella review.

IF 15.8 1区 医学 Q1 Medicine
Bethany Hillier, Katie Scandrett, April Coombe, Tina Hernandez-Boussard, Ewout Steyerberg, Yemisi Takwoingi, Vladica M Veličković, Jacqueline Dinnes
{"title":"Accuracy and clinical effectiveness of risk prediction tools for pressure injury occurrence: An umbrella review.","authors":"Bethany Hillier, Katie Scandrett, April Coombe, Tina Hernandez-Boussard, Ewout Steyerberg, Yemisi Takwoingi, Vladica M Veličković, Jacqueline Dinnes","doi":"10.1371/journal.pmed.1004518","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pressure injuries (PIs) pose a substantial healthcare burden and incur significant costs worldwide. Several risk prediction tools to allow timely implementation of preventive measures and a subsequent reduction in healthcare system burden are available and in use. The ability of risk prediction tools to correctly identify those at high risk of PI (prognostic accuracy) and to have a clinically significant impact on patient management and outcomes (effectiveness) is not clear. We aimed to evaluate the prognostic accuracy and clinical effectiveness of risk prediction tools for PI and to identify gaps in the literature.</p><p><strong>Methods and findings: </strong>The umbrella review was conducted according to Cochrane guidance. Systematic reviews (SRs) evaluating the accuracy or clinical effectiveness of adult PI risk prediction tools in any clinical settings were eligible. Studies on paediatric tools, sensor-only tools, or staging/diagnosis of existing PIs were excluded. MEDLINE, Embase, CINAHL, and EPISTEMONIKOS were searched (inception to June 2024) to identify relevant SRs, as well as Google Scholar (2013 to 2024) and reference lists. Methodological quality was assessed using adapted AMSTAR-2 criteria. Results were described narratively. We identified 26 SRs meeting all eligibility criteria with 19 SRs assessing prognostic accuracy and 11 assessing clinical effectiveness of risk prediction tools for PI (4 SRs assessed both aspects). The 19 SRs of prognostic accuracy evaluated 70 tools (39 scales and 31 machine learning (ML) models), with the Braden, Norton, Waterlow, Cubbin-Jackson scales (and modifications thereof) the most evaluated tools. Meta-analyses from a focused set of included SRs showed that the scales had sensitivities and specificities ranging from 53% to 97% and 46% to 84%, respectively. Only 2/19 (11%) SRs performed appropriate statistical synthesis and quality assessment. Two SRs assessing machine learning-based algorithms reported high prognostic accuracy estimates, but some of which were sourced from the same data within which the models were developed, leading to potentially overoptimistic results. Two randomised trials assessing the effect of PI risk assessment tools (within the full test-intervention-outcome pathway) on the incidence of PIs were identified from the 11 SRs of clinical effectiveness; both were included in a Cochrane SR and assessed as high risk of bias. Both trials found no evidence of an effect on PI incidence. Limitations included the use of the AMSTAR-2 criteria, which may have overly focused on reporting quality rather than methodological quality, compounded by the poor reporting quality of included SRs and that SRs were not excluded based on low AMSTAR-2 ratings (in order to provide a comprehensive overview). Additionally, diagnostic test accuracy principles, rather than prognostic modelling approaches were heavily relied upon, which do not account for the temporal nature of prediction.</p><p><strong>Conclusions: </strong>Available systematic reviews suggest a lack of high-quality evidence for the accuracy of risk prediction tools for PI and limited reliable evidence for their use leading to a reduction in incidence of PI. Further research is needed to establish the clinical effectiveness of appropriately developed and validated risk prediction tools for PI.</p>","PeriodicalId":49008,"journal":{"name":"PLoS Medicine","volume":"22 2","pages":"e1004518"},"PeriodicalIF":15.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.pmed.1004518","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pressure injuries (PIs) pose a substantial healthcare burden and incur significant costs worldwide. Several risk prediction tools to allow timely implementation of preventive measures and a subsequent reduction in healthcare system burden are available and in use. The ability of risk prediction tools to correctly identify those at high risk of PI (prognostic accuracy) and to have a clinically significant impact on patient management and outcomes (effectiveness) is not clear. We aimed to evaluate the prognostic accuracy and clinical effectiveness of risk prediction tools for PI and to identify gaps in the literature.

Methods and findings: The umbrella review was conducted according to Cochrane guidance. Systematic reviews (SRs) evaluating the accuracy or clinical effectiveness of adult PI risk prediction tools in any clinical settings were eligible. Studies on paediatric tools, sensor-only tools, or staging/diagnosis of existing PIs were excluded. MEDLINE, Embase, CINAHL, and EPISTEMONIKOS were searched (inception to June 2024) to identify relevant SRs, as well as Google Scholar (2013 to 2024) and reference lists. Methodological quality was assessed using adapted AMSTAR-2 criteria. Results were described narratively. We identified 26 SRs meeting all eligibility criteria with 19 SRs assessing prognostic accuracy and 11 assessing clinical effectiveness of risk prediction tools for PI (4 SRs assessed both aspects). The 19 SRs of prognostic accuracy evaluated 70 tools (39 scales and 31 machine learning (ML) models), with the Braden, Norton, Waterlow, Cubbin-Jackson scales (and modifications thereof) the most evaluated tools. Meta-analyses from a focused set of included SRs showed that the scales had sensitivities and specificities ranging from 53% to 97% and 46% to 84%, respectively. Only 2/19 (11%) SRs performed appropriate statistical synthesis and quality assessment. Two SRs assessing machine learning-based algorithms reported high prognostic accuracy estimates, but some of which were sourced from the same data within which the models were developed, leading to potentially overoptimistic results. Two randomised trials assessing the effect of PI risk assessment tools (within the full test-intervention-outcome pathway) on the incidence of PIs were identified from the 11 SRs of clinical effectiveness; both were included in a Cochrane SR and assessed as high risk of bias. Both trials found no evidence of an effect on PI incidence. Limitations included the use of the AMSTAR-2 criteria, which may have overly focused on reporting quality rather than methodological quality, compounded by the poor reporting quality of included SRs and that SRs were not excluded based on low AMSTAR-2 ratings (in order to provide a comprehensive overview). Additionally, diagnostic test accuracy principles, rather than prognostic modelling approaches were heavily relied upon, which do not account for the temporal nature of prediction.

Conclusions: Available systematic reviews suggest a lack of high-quality evidence for the accuracy of risk prediction tools for PI and limited reliable evidence for their use leading to a reduction in incidence of PI. Further research is needed to establish the clinical effectiveness of appropriately developed and validated risk prediction tools for PI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Medicine
PLoS Medicine MEDICINE, GENERAL & INTERNAL-
CiteScore
17.60
自引率
0.60%
发文量
227
审稿时长
4-8 weeks
期刊介绍: PLOS Medicine is a prominent platform for discussing and researching global health challenges. The journal covers a wide range of topics, including biomedical, environmental, social, and political factors affecting health. It prioritizes articles that contribute to clinical practice, health policy, or a better understanding of pathophysiology, ultimately aiming to improve health outcomes across different settings. The journal is unwavering in its commitment to uphold the highest ethical standards in medical publishing. This includes actively managing and disclosing any conflicts of interest related to reporting, reviewing, and publishing. PLOS Medicine promotes transparency in the entire review and publication process. The journal also encourages data sharing and encourages the reuse of published work. Additionally, authors retain copyright for their work, and the publication is made accessible through Open Access with no restrictions on availability and dissemination. PLOS Medicine takes measures to avoid conflicts of interest associated with advertising drugs and medical devices or engaging in the exclusive sale of reprints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信