Exploring the potential of AI-driven food waste management strategies used in the hospitality industry for application in household settings.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-01-23 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1429477
Quintana M Clark, Disha Basavaraja Kanavikar, Jason Clark, Patrick J Donnelly
{"title":"Exploring the potential of AI-driven food waste management strategies used in the hospitality industry for application in household settings.","authors":"Quintana M Clark, Disha Basavaraja Kanavikar, Jason Clark, Patrick J Donnelly","doi":"10.3389/frai.2024.1429477","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the potential for adapting AI-driven food waste management strategies from the hospitality industry for application in household settings. The hospitality industry, particularly hotels and restaurants, has implemented AI technologies through companies like Leanpath, Winnow, and Kitro, which use real-time data and predictive analytics to monitor, categorize, and reduce food waste. These AI-driven systems have demonstrated significant reductions in food waste, offering economic savings and environmental benefits. This study employs an instrumental case study approach, utilizing semi-structured interviews with representatives from these companies to gain insights into the technologies and strategies that have proven effective in hospitality. The findings suggest that with modifications for scale, cost, and user engagement, AI-driven solutions could enhance household food management by providing insights into consumption patterns, offering expiration reminders, and supporting sustainable practices. Highlighted are key considerations for household adaptation, including policy support, educational strategies, economic incentives, and integration with smart home systems. Ultimately, this study identifies a promising avenue for reducing household food waste through AI, underscoring the need for continued research and policy initiatives to facilitate the transition of these technologies from commercial kitchens to everyday homes.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1429477"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1429477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential for adapting AI-driven food waste management strategies from the hospitality industry for application in household settings. The hospitality industry, particularly hotels and restaurants, has implemented AI technologies through companies like Leanpath, Winnow, and Kitro, which use real-time data and predictive analytics to monitor, categorize, and reduce food waste. These AI-driven systems have demonstrated significant reductions in food waste, offering economic savings and environmental benefits. This study employs an instrumental case study approach, utilizing semi-structured interviews with representatives from these companies to gain insights into the technologies and strategies that have proven effective in hospitality. The findings suggest that with modifications for scale, cost, and user engagement, AI-driven solutions could enhance household food management by providing insights into consumption patterns, offering expiration reminders, and supporting sustainable practices. Highlighted are key considerations for household adaptation, including policy support, educational strategies, economic incentives, and integration with smart home systems. Ultimately, this study identifies a promising avenue for reducing household food waste through AI, underscoring the need for continued research and policy initiatives to facilitate the transition of these technologies from commercial kitchens to everyday homes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信