Enhancing Africa's agriculture and food systems through responsible and gender inclusive AI innovation: insights from AI4AFS network.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-01-23 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1472236
Nicholas Ozor, Joel Nwakaire, Alfred Nyambane, Wentland Muhatiah, Cynthia Nwobodo
{"title":"Enhancing Africa's agriculture and food systems through responsible and gender inclusive AI innovation: insights from AI4AFS network.","authors":"Nicholas Ozor, Joel Nwakaire, Alfred Nyambane, Wentland Muhatiah, Cynthia Nwobodo","doi":"10.3389/frai.2024.1472236","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) technologies into agriculture holds urgent and transformative potential for enhancing food security across Sub-Saharan Africa (SSA), a region acutely impacted by climate change and resource constraints. This paper examines experiences from the Artificial Intelligence for Agriculture and Food Systems (AI4AFS) Innovation Research Network, which provided funding to innovative projects in eight SSA countries. Through a set of case studies, we explore AI-driven solutions for pest and disease detection across crops such as cashew, maize, tomato, and cassava, including a real-time health monitoring tool for Nsukka Yellow pepper. Using participatory design, and key informant interview, robust monitoring and evaluation, and incorporating ethical frameworks, the research prioritizes gender equality, social inclusion, and environmental sustainability in AI development and deployment. Our results demonstrate that responsible AI practices can significantly enhance agricultural productivity while maintaining low carbon footprints. This research offers a unique, localized perspective on AI's role in addressing SSA's agricultural challenges, with implications for global food security as demand rises and environmental resources shrink. Key recommendations include establishing robust policy frameworks, strengthening capacity-building efforts, and securing sustainable funding mechanisms to support long-term AI adoption. This work provides the global community, policymakers, and stakeholders with critical insights on establishing ethical, responsible, and inclusive AI practices that can be adapted to similar agricultural contexts worldwide, contributing to sustainable food systems on an international scale.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1472236"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798938/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1472236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of artificial intelligence (AI) technologies into agriculture holds urgent and transformative potential for enhancing food security across Sub-Saharan Africa (SSA), a region acutely impacted by climate change and resource constraints. This paper examines experiences from the Artificial Intelligence for Agriculture and Food Systems (AI4AFS) Innovation Research Network, which provided funding to innovative projects in eight SSA countries. Through a set of case studies, we explore AI-driven solutions for pest and disease detection across crops such as cashew, maize, tomato, and cassava, including a real-time health monitoring tool for Nsukka Yellow pepper. Using participatory design, and key informant interview, robust monitoring and evaluation, and incorporating ethical frameworks, the research prioritizes gender equality, social inclusion, and environmental sustainability in AI development and deployment. Our results demonstrate that responsible AI practices can significantly enhance agricultural productivity while maintaining low carbon footprints. This research offers a unique, localized perspective on AI's role in addressing SSA's agricultural challenges, with implications for global food security as demand rises and environmental resources shrink. Key recommendations include establishing robust policy frameworks, strengthening capacity-building efforts, and securing sustainable funding mechanisms to support long-term AI adoption. This work provides the global community, policymakers, and stakeholders with critical insights on establishing ethical, responsible, and inclusive AI practices that can be adapted to similar agricultural contexts worldwide, contributing to sustainable food systems on an international scale.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信