Expression and biochemical characterization of a novel NAD+-dependent xylitol dehydrogenase from the plant endophytic fungus Trichoderma gamsii.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Shuping Fei, Wenxiu Hu, Jingwen Shu, Ruirui Zhao, Jiatong Zhao, Mengwei Jiang, Wenwen Wu, Chaoqun Lian, Wanggang Tang
{"title":"Expression and biochemical characterization of a novel NAD<sup>+</sup>-dependent xylitol dehydrogenase from the plant endophytic fungus Trichoderma gamsii.","authors":"Shuping Fei, Wenxiu Hu, Jingwen Shu, Ruirui Zhao, Jiatong Zhao, Mengwei Jiang, Wenwen Wu, Chaoqun Lian, Wanggang Tang","doi":"10.1016/j.pep.2025.106687","DOIUrl":null,"url":null,"abstract":"<p><p>Xylitol dehydrogenase (XDH; EC 1.1.1.9), encoded by the XYL2 gene, is a key enzyme in the fungal xylose metabolic pathway. In this work, a putative XDH from the plant endophytic fungus Trichoderma gamsii (TgXDH) was hetero-expressed in Escherichia coli BL21(DE3), purified to the homogeneity, and biochemically characterized. Sequence analysis revealed that TgXDH is 363 amino acids long and belongs to the zinc-containing medium-chain alcohol dehydrogenase superfamily. The size-exclusion chromatography analysis and SDS-PAGE showed that the purified recombinant TgXDH had a native molecular mass of ∼155 kDa and was composed of four identical subunits of molecular mass of ∼39 kDa. The optimum temperature and pH of this enzyme were 25 °C and pH 9.5, respectively. Kinetic analysis showed that it is an NAD<sup>+</sup>-dependent enzyme that has a polyol substrate preference (based on k<sub>cat</sub>/K<sub>m</sub>) in the order xylitol > ribitol ≈ d-sorbitol. The K<sub>m</sub> values for NAD<sup>+</sup> with these three polyols ranged from 0.23 to 0.70 mM. Moreover, TgXDH showed high substrate affinities as compared to most of its homologs. The K<sub>m</sub> values for xylitol, ribitol, and d-sorbitol were 5.23 ± 0.68 mM, 8.01 ± 1.22 mM, and 12.34 ± 1.37 mM, respectively. Collectively, the results will contribute to understanding the biochemical properties of a novel XDH from the filamentous fungi and provide a promising XDH for industrial production of ethanol.</p>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":" ","pages":"106687"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pep.2025.106687","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Xylitol dehydrogenase (XDH; EC 1.1.1.9), encoded by the XYL2 gene, is a key enzyme in the fungal xylose metabolic pathway. In this work, a putative XDH from the plant endophytic fungus Trichoderma gamsii (TgXDH) was hetero-expressed in Escherichia coli BL21(DE3), purified to the homogeneity, and biochemically characterized. Sequence analysis revealed that TgXDH is 363 amino acids long and belongs to the zinc-containing medium-chain alcohol dehydrogenase superfamily. The size-exclusion chromatography analysis and SDS-PAGE showed that the purified recombinant TgXDH had a native molecular mass of ∼155 kDa and was composed of four identical subunits of molecular mass of ∼39 kDa. The optimum temperature and pH of this enzyme were 25 °C and pH 9.5, respectively. Kinetic analysis showed that it is an NAD+-dependent enzyme that has a polyol substrate preference (based on kcat/Km) in the order xylitol > ribitol ≈ d-sorbitol. The Km values for NAD+ with these three polyols ranged from 0.23 to 0.70 mM. Moreover, TgXDH showed high substrate affinities as compared to most of its homologs. The Km values for xylitol, ribitol, and d-sorbitol were 5.23 ± 0.68 mM, 8.01 ± 1.22 mM, and 12.34 ± 1.37 mM, respectively. Collectively, the results will contribute to understanding the biochemical properties of a novel XDH from the filamentous fungi and provide a promising XDH for industrial production of ethanol.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信