Expression and biochemical characterization of a novel NAD+-dependent xylitol dehydrogenase from the plant endophytic fungus Trichoderma gamsii

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Shuping Fei , Wenxiu Hu , Jingwen Shu , Ruirui Zhao , Jiatong Zhao , Mengwei Jiang , Wenwen Wu , Chaoqun Lian , Wanggang Tang
{"title":"Expression and biochemical characterization of a novel NAD+-dependent xylitol dehydrogenase from the plant endophytic fungus Trichoderma gamsii","authors":"Shuping Fei ,&nbsp;Wenxiu Hu ,&nbsp;Jingwen Shu ,&nbsp;Ruirui Zhao ,&nbsp;Jiatong Zhao ,&nbsp;Mengwei Jiang ,&nbsp;Wenwen Wu ,&nbsp;Chaoqun Lian ,&nbsp;Wanggang Tang","doi":"10.1016/j.pep.2025.106687","DOIUrl":null,"url":null,"abstract":"<div><div>Xylitol dehydrogenase (XDH; EC 1.1.1.9), encoded by the <em>XYL2</em> gene, is a key enzyme in the fungal xylose metabolic pathway. In this work, a putative XDH from the plant endophytic fungus <em>Trichoderma gamsii</em> (TgXDH) was hetero-expressed in <em>Escherichia coli</em> BL21(DE3), purified to the homogeneity, and biochemically characterized. Sequence analysis revealed that TgXDH is 363 amino acids long and belongs to the zinc-containing medium-chain alcohol dehydrogenase superfamily. The size-exclusion chromatography analysis and SDS-PAGE showed that the purified recombinant TgXDH had a native molecular mass of ∼155 kDa and was composed of four identical subunits of molecular mass of ∼39 kDa. The optimum temperature and pH of this enzyme were 25 °C and pH 9.5, respectively. Kinetic analysis showed that it is an NAD<sup>+</sup>-dependent enzyme that has a polyol substrate preference (based on <em>k</em><sub>cat</sub>/<em>K</em><sub>m</sub>) in the order xylitol &gt; ribitol ≈ <span>d</span>-sorbitol. The <em>K</em><sub>m</sub> values for NAD<sup>+</sup> with these three polyols ranged from 0.23 to 0.70 mM. Moreover, TgXDH showed high substrate affinities as compared to most of its homologs. The <em>K</em><sub>m</sub> values for xylitol, ribitol, and <span>d</span>-sorbitol were 5.23 ± 0.68 mM, 8.01 ± 1.22 mM, and 12.34 ± 1.37 mM, respectively. Collectively, the results will contribute to understanding the biochemical properties of a novel XDH from the filamentous fungi and provide a promising XDH for industrial production of ethanol.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"229 ","pages":"Article 106687"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592825000294","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Xylitol dehydrogenase (XDH; EC 1.1.1.9), encoded by the XYL2 gene, is a key enzyme in the fungal xylose metabolic pathway. In this work, a putative XDH from the plant endophytic fungus Trichoderma gamsii (TgXDH) was hetero-expressed in Escherichia coli BL21(DE3), purified to the homogeneity, and biochemically characterized. Sequence analysis revealed that TgXDH is 363 amino acids long and belongs to the zinc-containing medium-chain alcohol dehydrogenase superfamily. The size-exclusion chromatography analysis and SDS-PAGE showed that the purified recombinant TgXDH had a native molecular mass of ∼155 kDa and was composed of four identical subunits of molecular mass of ∼39 kDa. The optimum temperature and pH of this enzyme were 25 °C and pH 9.5, respectively. Kinetic analysis showed that it is an NAD+-dependent enzyme that has a polyol substrate preference (based on kcat/Km) in the order xylitol > ribitol ≈ d-sorbitol. The Km values for NAD+ with these three polyols ranged from 0.23 to 0.70 mM. Moreover, TgXDH showed high substrate affinities as compared to most of its homologs. The Km values for xylitol, ribitol, and d-sorbitol were 5.23 ± 0.68 mM, 8.01 ± 1.22 mM, and 12.34 ± 1.37 mM, respectively. Collectively, the results will contribute to understanding the biochemical properties of a novel XDH from the filamentous fungi and provide a promising XDH for industrial production of ethanol.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信