Sequence of pseudoequilibria describes the long-time behavior of the nonlinear noisy leaky integrate-and-fire model with large delay.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
María J Cáceres, José A Cañizo, Alejandro Ramos-Lora
{"title":"Sequence of pseudoequilibria describes the long-time behavior of the nonlinear noisy leaky integrate-and-fire model with large delay.","authors":"María J Cáceres, José A Cañizo, Alejandro Ramos-Lora","doi":"10.1103/PhysRevE.110.064308","DOIUrl":null,"url":null,"abstract":"<p><p>There is a wide range of mathematical models that describe populations of large numbers of neurons. In this article, we focus on nonlinear noisy leaky integrate-and-fire (NNLIF) models that describe neuronal activity at the level of the membrane potential. We introduce a sequence of states, which we call pseudoequilibria, and give evidence of their defining role in the behavior of the NNLIF system when a significant synaptic delay is considered. The advantage is that these states are determined solely by the system's parameters and are derived from a sequence of firing rates that result from solving a recurrence equation. We propose a strategy to show convergence to an equilibrium for a weakly connected system with large transmission delay, based on following the sequence of pseudoequilibria. Unlike direct entropy dissipation methods, this technique allows us to see how a large delay favors convergence. We present a detailed numerical study to support our results. This study helps us understand, among other phenomena, the appearance of periodic solutions in strongly inhibitory networks.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6-1","pages":"064308"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.064308","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

There is a wide range of mathematical models that describe populations of large numbers of neurons. In this article, we focus on nonlinear noisy leaky integrate-and-fire (NNLIF) models that describe neuronal activity at the level of the membrane potential. We introduce a sequence of states, which we call pseudoequilibria, and give evidence of their defining role in the behavior of the NNLIF system when a significant synaptic delay is considered. The advantage is that these states are determined solely by the system's parameters and are derived from a sequence of firing rates that result from solving a recurrence equation. We propose a strategy to show convergence to an equilibrium for a weakly connected system with large transmission delay, based on following the sequence of pseudoequilibria. Unlike direct entropy dissipation methods, this technique allows us to see how a large delay favors convergence. We present a detailed numerical study to support our results. This study helps us understand, among other phenomena, the appearance of periodic solutions in strongly inhibitory networks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信