Phage reprogramming of Pseudomonas aeruginosa amino acid metabolism drives efficient phage replication.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-02-07 DOI:10.1128/mbio.02466-24
Alexa D Fitzpatrick, Véronique L Taylor, Pramalkumar H Patel, Dominick R Faith, Patrick R Secor, Karen L Maxwell
{"title":"Phage reprogramming of <i>Pseudomonas aeruginosa</i> amino acid metabolism drives efficient phage replication.","authors":"Alexa D Fitzpatrick, Véronique L Taylor, Pramalkumar H Patel, Dominick R Faith, Patrick R Secor, Karen L Maxwell","doi":"10.1128/mbio.02466-24","DOIUrl":null,"url":null,"abstract":"<p><p>Phages have been shown to use diverse strategies to commandeer bacterial host cell metabolism during infection. However, for many of the physiological changes in bacteria during infection, it is often unclear if they are part of a bacterial response to infection or if they are actively driven by the phage itself. Here, we identify two phage proteins that promote efficient phage replication by reprogramming host amino acid metabolism. These proteins, Eht1 and Eht2, are expressed early in the infection cycle and increase the levels of key amino acids and the arginine-derived polyamine putrescine. This provides a fitness advantage as these metabolites are important for phage replication and are often depleted during infection. We provide evidence that Eht1 and Eht2 alter the expression of bacterial host metabolic genes, and their activities may impinge on metabolism-related signaling processes. This work provides new insight into how phages ensure access to essential host resources during infection and the competitive advantage this provides.IMPORTANCEBacterial viruses, known as phages, are abundant in all environments that are inhabited by bacteria. During the infection process, phages exploit bacterial resources, resulting in notable changes to bacterial metabolism. However, precise mechanisms underlying these changes, and if they are driven by the phage or are a generalized bacterial response to infection, remain poorly understood. We characterized two proteins in <i>Pseudomonas aeruginosa</i> phage JBD44 whose activities alter bacterial host metabolism to optimize phage replication. Our work provides insight into how phages control bacterial processes to ensure access to essential host resources during infection.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0246624"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02466-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phages have been shown to use diverse strategies to commandeer bacterial host cell metabolism during infection. However, for many of the physiological changes in bacteria during infection, it is often unclear if they are part of a bacterial response to infection or if they are actively driven by the phage itself. Here, we identify two phage proteins that promote efficient phage replication by reprogramming host amino acid metabolism. These proteins, Eht1 and Eht2, are expressed early in the infection cycle and increase the levels of key amino acids and the arginine-derived polyamine putrescine. This provides a fitness advantage as these metabolites are important for phage replication and are often depleted during infection. We provide evidence that Eht1 and Eht2 alter the expression of bacterial host metabolic genes, and their activities may impinge on metabolism-related signaling processes. This work provides new insight into how phages ensure access to essential host resources during infection and the competitive advantage this provides.IMPORTANCEBacterial viruses, known as phages, are abundant in all environments that are inhabited by bacteria. During the infection process, phages exploit bacterial resources, resulting in notable changes to bacterial metabolism. However, precise mechanisms underlying these changes, and if they are driven by the phage or are a generalized bacterial response to infection, remain poorly understood. We characterized two proteins in Pseudomonas aeruginosa phage JBD44 whose activities alter bacterial host metabolism to optimize phage replication. Our work provides insight into how phages control bacterial processes to ensure access to essential host resources during infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信