KNIME Workflows for Chemoinformatic Characterization of Chemical Databases.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Carlos D Ramírez-Márquez, José L Medina-Franco
{"title":"KNIME Workflows for Chemoinformatic Characterization of Chemical Databases.","authors":"Carlos D Ramírez-Márquez, José L Medina-Franco","doi":"10.1002/minf.202400337","DOIUrl":null,"url":null,"abstract":"<p><p>In chemoinformatics, chemical databases have great importance since their main objective is to store and organize the chemical structures of molecules and their properties, from basic information such as chemical structure to more complex like molecular fingerprints or other types of calculated or experimental descriptors and biological activity. However, this data can only be utilized in projects to identify novel therapeutic molecules or other fields through their correct characterization and analysis. In this Application Note, we compiled five workflows within the open-source data analytics and visualization platform KNIME that can be implemented for the chemoinformatic characterization of databases. To illustrate the application of the workflows, we used BIOFACQUIM, a compound database of natural products isolated and characterized in Mexico [1].</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 2","pages":"e202400337"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400337","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In chemoinformatics, chemical databases have great importance since their main objective is to store and organize the chemical structures of molecules and their properties, from basic information such as chemical structure to more complex like molecular fingerprints or other types of calculated or experimental descriptors and biological activity. However, this data can only be utilized in projects to identify novel therapeutic molecules or other fields through their correct characterization and analysis. In this Application Note, we compiled five workflows within the open-source data analytics and visualization platform KNIME that can be implemented for the chemoinformatic characterization of databases. To illustrate the application of the workflows, we used BIOFACQUIM, a compound database of natural products isolated and characterized in Mexico [1].

用于化学数据库化学信息学表征的KNIME工作流程。
在化学信息学中,化学数据库非常重要,因为它们的主要目的是存储和组织分子的化学结构及其性质,从基本信息(如化学结构)到更复杂的信息(如分子指纹或其他类型的计算或实验描述符和生物活性)。然而,这些数据只能用于项目中,通过正确的表征和分析来识别新的治疗分子或其他领域。在本应用笔记中,我们在开源数据分析和可视化平台KNIME中编译了五个工作流程,可以用于数据库的化学信息学表征。为了说明工作流程的应用,我们使用了BIOFACQUIM,这是一个从墨西哥[1]分离和鉴定的天然产物的化合物数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信