Rasool Doostkam, Luca Gelisio, Aycan Yurtsever, Ludovic Rapp, Andrei V Rode, Kenneth R Beyerlein
{"title":"Studying novel high-pressure phases in laser-shock-affected silicon using poly: an algorithm for spot-wise phase identification.","authors":"Rasool Doostkam, Luca Gelisio, Aycan Yurtsever, Ludovic Rapp, Andrei V Rode, Kenneth R Beyerlein","doi":"10.1107/S1600576724011178","DOIUrl":null,"url":null,"abstract":"<p><p>Fast quenching dynamics in confined laser-induced microexplosions have been shown to lead to localized shockwaves that can create nanometre-scale domains in novel high-pressure crystalline phases. In the case of silicon, new silicon polymorphs such as bt8-Si and st12-Si have been recently observed, which are predicted to have bandgaps desirable for photovoltaic applications. Identification of these phases has been previously achieved by analysis of selected-area electron diffraction (SAED) patterns taken from laser-shock-affected areas. However, this analysis was complicated by pattern overlap from the many crystallites in the selected area, and many spots were found to agree with multiple potential phases. To overcome this ambiguity and enable the identification of the phase of Bragg spots observed in SAED patterns from polymorphic nanomaterials, we developed a new algorithm that we termed poly. This method is based on maximizing the magnitude and angular correlation between observed diffraction spots and those values derived from a known potential phase. We present the performance of this algorithm on simulated electron diffraction patterns as well as experimental SAED patterns measured from laser-shock-affected silicon samples. We find that the most abundant phases in the affected areas are t32-Si and t32*-Si and report on their relaxation into other high-pressure silicon phases over the course of 90 days after the laser-induced confined microexplosion.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 1","pages":"128-137"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724011178","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Fast quenching dynamics in confined laser-induced microexplosions have been shown to lead to localized shockwaves that can create nanometre-scale domains in novel high-pressure crystalline phases. In the case of silicon, new silicon polymorphs such as bt8-Si and st12-Si have been recently observed, which are predicted to have bandgaps desirable for photovoltaic applications. Identification of these phases has been previously achieved by analysis of selected-area electron diffraction (SAED) patterns taken from laser-shock-affected areas. However, this analysis was complicated by pattern overlap from the many crystallites in the selected area, and many spots were found to agree with multiple potential phases. To overcome this ambiguity and enable the identification of the phase of Bragg spots observed in SAED patterns from polymorphic nanomaterials, we developed a new algorithm that we termed poly. This method is based on maximizing the magnitude and angular correlation between observed diffraction spots and those values derived from a known potential phase. We present the performance of this algorithm on simulated electron diffraction patterns as well as experimental SAED patterns measured from laser-shock-affected silicon samples. We find that the most abundant phases in the affected areas are t32-Si and t32*-Si and report on their relaxation into other high-pressure silicon phases over the course of 90 days after the laser-induced confined microexplosion.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.