Fabian Gasser, Josef Simbrunner, Marten Huck, Armin Moser, Hans-Georg Steinrück, Roland Resel
{"title":"Intensity corrections for grazing-incidence X-ray diffraction of thin films using static area detectors.","authors":"Fabian Gasser, Josef Simbrunner, Marten Huck, Armin Moser, Hans-Georg Steinrück, Roland Resel","doi":"10.1107/S1600576724010628","DOIUrl":null,"url":null,"abstract":"<p><p>Grazing-incidence X-ray diffraction (GIXD) is the technique of choice for obtaining crystallographic information from thin films. An essential step in the evaluation of GIXD data is the extraction of peak intensities, as they are directly linked to the positions of individual atoms within the crystal unit cell. In order to obtain reliable intensities independent of the experimental setup, a variety of correction factors need to be applied to measured GIXD raw data. These include the polarization of the incident beam, solid-angle variations, absorption effects, the transmission coefficient and the Lorentz correction. The aim of this work is to provide a systematic compilation of these intensity corrections required for state-of-the-art GIXD setups with static area detectors. In a first step, analytical formulae are derived on the basis of theoretical considerations. The obtained intensity corrections are then applied to measured GIXD raw data from samples with different textures, including a single crystal and thin films containing either randomly distributed or oriented crystallites. By taking advantage of the symmetries inherent in the different types of textures, integrated peak intensities are determined, and these are compared with intensities calculated from single-crystal diffraction data from the literature. Accurate intensity corrections promise an improved quality of crystal structure solution from thin films and contribute to achieving accurate phase and texture quantifications from GIXD measurements.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 1","pages":"96-106"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724010628","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Grazing-incidence X-ray diffraction (GIXD) is the technique of choice for obtaining crystallographic information from thin films. An essential step in the evaluation of GIXD data is the extraction of peak intensities, as they are directly linked to the positions of individual atoms within the crystal unit cell. In order to obtain reliable intensities independent of the experimental setup, a variety of correction factors need to be applied to measured GIXD raw data. These include the polarization of the incident beam, solid-angle variations, absorption effects, the transmission coefficient and the Lorentz correction. The aim of this work is to provide a systematic compilation of these intensity corrections required for state-of-the-art GIXD setups with static area detectors. In a first step, analytical formulae are derived on the basis of theoretical considerations. The obtained intensity corrections are then applied to measured GIXD raw data from samples with different textures, including a single crystal and thin films containing either randomly distributed or oriented crystallites. By taking advantage of the symmetries inherent in the different types of textures, integrated peak intensities are determined, and these are compared with intensities calculated from single-crystal diffraction data from the literature. Accurate intensity corrections promise an improved quality of crystal structure solution from thin films and contribute to achieving accurate phase and texture quantifications from GIXD measurements.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.