Jérôme Kieffer, Julien Orlans, Nicolas Coquelle, Samuel Debionne, Shibom Basu, Alejandro Homs, Gianluca Santoni, Daniele De Sanctis
{"title":"Application of signal separation to diffraction image compression and serial crystallography.","authors":"Jérôme Kieffer, Julien Orlans, Nicolas Coquelle, Samuel Debionne, Shibom Basu, Alejandro Homs, Gianluca Santoni, Daniele De Sanctis","doi":"10.1107/S1600576724011038","DOIUrl":null,"url":null,"abstract":"<p><p>We present here a methodology for real-time analysis of diffraction images acquired at a high frame rate (925 Hz) and its application to macromolecular serial crystallography at ESRF. We introduce a new signal-separation algorithm, able to distinguish the amorphous (or powder diffraction) component from the diffraction signal originating from single crystals. It relies on the ability to work efficiently in azimuthal space and is implemented in <i>pyFAI</i>, the fast azimuthal integration library. Two applications are built upon this separation algorithm: a lossy compression algorithm and a peak-picking algorithm. The performances of both are assessed by comparing data quality after reduction with <i>XDS</i> and <i>CrystFEL</i>.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 1","pages":"138-153"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724011038","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
We present here a methodology for real-time analysis of diffraction images acquired at a high frame rate (925 Hz) and its application to macromolecular serial crystallography at ESRF. We introduce a new signal-separation algorithm, able to distinguish the amorphous (or powder diffraction) component from the diffraction signal originating from single crystals. It relies on the ability to work efficiently in azimuthal space and is implemented in pyFAI, the fast azimuthal integration library. Two applications are built upon this separation algorithm: a lossy compression algorithm and a peak-picking algorithm. The performances of both are assessed by comparing data quality after reduction with XDS and CrystFEL.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.