Wastewater-based genomic surveillance of SARS-CoV-2 in vulnerable communities in Mumbai.

IF 2.7 4区 医学 Q3 IMMUNOLOGY
Pratibha Prakash Kadam, Tejal Mestry, Nerges Mistry, Kayzad Soli Nilgiriwala
{"title":"Wastewater-based genomic surveillance of SARS-CoV-2 in vulnerable communities in Mumbai.","authors":"Pratibha Prakash Kadam, Tejal Mestry, Nerges Mistry, Kayzad Soli Nilgiriwala","doi":"10.25259/ijmr_299_24","DOIUrl":null,"url":null,"abstract":"<p><p>Background & objectives The global impact of COVID-19, with over 45 million cases and 533,300 deaths in India alone, necessitates effective surveillance methods. Traditional approaches face challenges in detecting pre-symptomatic and asymptomatic cases, prompting the exploration of wastewater-based epidemiology (WBE). This study focuses on Mumbai's vulnerable slums, aiming to assess the potential of WBE as an alternative surveillance method. Methods Genomic surveillance of SARS-CoV-2 was conducted in Mumbai's vulnerable settings (slums) for 11 months (August 2022 to June 2023). Wastewater samples from open drains and sewage treatment plants were correlated with reported COVID-19 cases in the city. Early detection of emerging viral variants and seasonal variations in viral load were explored. Results Correlations were identified between wastewater samples and reported COVID-19 cases in Mumbai's vulnerable slums, with early detection occurring three weeks before clinical diagnoses, underscoring the potential utility of WBE. Genomic sequencing provided insights into the viral variants, identifying shifts in predominant variants. Seasonal variations showed higher viral concentrations in summer and monsoon, potentially associated with accelerated droplet evaporation in early summer and droplet-based transmission during mid-summer and monsoon. Interpretation & conclusions Wastewater-based epidemiology emerges as a cost-effective and rapid early warning system, providing crucial insights into virus behaviour and evolution. Particularly significant for countries like India, WBE aids in outbreak monitoring and targeted interventions. The global integration of wastewater surveillance emphasizes its importance in comprehensive pandemic monitoring, establishing it as an integral component of public health strategies worldwide.</p>","PeriodicalId":13349,"journal":{"name":"Indian Journal of Medical Research","volume":"160 6","pages":"570-577"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.25259/ijmr_299_24","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & objectives The global impact of COVID-19, with over 45 million cases and 533,300 deaths in India alone, necessitates effective surveillance methods. Traditional approaches face challenges in detecting pre-symptomatic and asymptomatic cases, prompting the exploration of wastewater-based epidemiology (WBE). This study focuses on Mumbai's vulnerable slums, aiming to assess the potential of WBE as an alternative surveillance method. Methods Genomic surveillance of SARS-CoV-2 was conducted in Mumbai's vulnerable settings (slums) for 11 months (August 2022 to June 2023). Wastewater samples from open drains and sewage treatment plants were correlated with reported COVID-19 cases in the city. Early detection of emerging viral variants and seasonal variations in viral load were explored. Results Correlations were identified between wastewater samples and reported COVID-19 cases in Mumbai's vulnerable slums, with early detection occurring three weeks before clinical diagnoses, underscoring the potential utility of WBE. Genomic sequencing provided insights into the viral variants, identifying shifts in predominant variants. Seasonal variations showed higher viral concentrations in summer and monsoon, potentially associated with accelerated droplet evaporation in early summer and droplet-based transmission during mid-summer and monsoon. Interpretation & conclusions Wastewater-based epidemiology emerges as a cost-effective and rapid early warning system, providing crucial insights into virus behaviour and evolution. Particularly significant for countries like India, WBE aids in outbreak monitoring and targeted interventions. The global integration of wastewater surveillance emphasizes its importance in comprehensive pandemic monitoring, establishing it as an integral component of public health strategies worldwide.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
191
审稿时长
3-8 weeks
期刊介绍: The Indian Journal of Medical Research (IJMR) [ISSN 0971-5916] is one of the oldest medical Journals not only in India, but probably in Asia, as it started in the year 1913. The Journal was started as a quarterly (4 issues/year) in 1913 and made bimonthly (6 issues/year) in 1958. It became monthly (12 issues/year) in the year 1964.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信