{"title":"Itraconazole promotes melanoma cells apoptosis via inhibiting hedgehog signaling pathway-mediated autophagy.","authors":"Shunqiao Jin, Xiaojiao Liu, Lingqin Cai, Jiayu Yan, Ling Li, Hongjun Dong, Yuxue Gao, Xicong Zhu, Cong Zhang, Xuezhu Xu","doi":"10.3389/fphar.2025.1545243","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Itraconazole, a widely used antifungal medication, has shown potential in inhibiting tumor growth and reducing angiogenesis. However, its role in melanoma tumor growth remains insufficiently explored. This study investigates the inductive effect of itraconazole on autophagy-mediated apoptosis in melanoma cells.</p><p><strong>Method: </strong>Potential drug targets were identified using the PMF machine learning algorithm. Apoptosis and cell cycle in melanoma cell lines A375 and A2058 were assessed via flow cytometry. Western blot analysis was performed to examine autophagy and associated signaling proteins, while autophagy flux and autophagosome formation were visualized using fluorescence microscopy. A melanoma cell xenograft mouse model was established to evaluate the inhibitory mechanisms of itraconazole on tumor cell proliferation.</p><p><strong>Result: </strong>Using the PMF machine learning algorithm, SQSTM1 was identified as the primary target of itraconazole. Itraconazole inhibited melanoma cell proliferation by inducing G1 phase arrest and autophagy-mediated apoptosis in A375 and A2058 cells. Furthermore, itraconazole suppressed Hedgehog signaling and counteracted the activation of the Hedgehog agonist recombinant human Sonic Hedgehog (rhShh). <i>In vivo</i>, itraconazole significantly reduced tumor growth in A375 and A2058 xenograft models.</p><p><strong>Conclusion: </strong>Itraconazole induces autophagy-mediated apoptosis in melanoma cells by inhibiting Hedgehog signaling, underscoring its potential as a therapeutic option for melanoma treatment.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"16 ","pages":"1545243"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2025.1545243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Itraconazole, a widely used antifungal medication, has shown potential in inhibiting tumor growth and reducing angiogenesis. However, its role in melanoma tumor growth remains insufficiently explored. This study investigates the inductive effect of itraconazole on autophagy-mediated apoptosis in melanoma cells.
Method: Potential drug targets were identified using the PMF machine learning algorithm. Apoptosis and cell cycle in melanoma cell lines A375 and A2058 were assessed via flow cytometry. Western blot analysis was performed to examine autophagy and associated signaling proteins, while autophagy flux and autophagosome formation were visualized using fluorescence microscopy. A melanoma cell xenograft mouse model was established to evaluate the inhibitory mechanisms of itraconazole on tumor cell proliferation.
Result: Using the PMF machine learning algorithm, SQSTM1 was identified as the primary target of itraconazole. Itraconazole inhibited melanoma cell proliferation by inducing G1 phase arrest and autophagy-mediated apoptosis in A375 and A2058 cells. Furthermore, itraconazole suppressed Hedgehog signaling and counteracted the activation of the Hedgehog agonist recombinant human Sonic Hedgehog (rhShh). In vivo, itraconazole significantly reduced tumor growth in A375 and A2058 xenograft models.
Conclusion: Itraconazole induces autophagy-mediated apoptosis in melanoma cells by inhibiting Hedgehog signaling, underscoring its potential as a therapeutic option for melanoma treatment.
期刊介绍:
Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.