Itraconazole promotes melanoma cells apoptosis via inhibiting hedgehog signaling pathway-mediated autophagy.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Frontiers in Pharmacology Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.3389/fphar.2025.1545243
Shunqiao Jin, Xiaojiao Liu, Lingqin Cai, Jiayu Yan, Ling Li, Hongjun Dong, Yuxue Gao, Xicong Zhu, Cong Zhang, Xuezhu Xu
{"title":"Itraconazole promotes melanoma cells apoptosis via inhibiting hedgehog signaling pathway-mediated autophagy.","authors":"Shunqiao Jin, Xiaojiao Liu, Lingqin Cai, Jiayu Yan, Ling Li, Hongjun Dong, Yuxue Gao, Xicong Zhu, Cong Zhang, Xuezhu Xu","doi":"10.3389/fphar.2025.1545243","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Itraconazole, a widely used antifungal medication, has shown potential in inhibiting tumor growth and reducing angiogenesis. However, its role in melanoma tumor growth remains insufficiently explored. This study investigates the inductive effect of itraconazole on autophagy-mediated apoptosis in melanoma cells.</p><p><strong>Method: </strong>Potential drug targets were identified using the PMF machine learning algorithm. Apoptosis and cell cycle in melanoma cell lines A375 and A2058 were assessed via flow cytometry. Western blot analysis was performed to examine autophagy and associated signaling proteins, while autophagy flux and autophagosome formation were visualized using fluorescence microscopy. A melanoma cell xenograft mouse model was established to evaluate the inhibitory mechanisms of itraconazole on tumor cell proliferation.</p><p><strong>Result: </strong>Using the PMF machine learning algorithm, SQSTM1 was identified as the primary target of itraconazole. Itraconazole inhibited melanoma cell proliferation by inducing G1 phase arrest and autophagy-mediated apoptosis in A375 and A2058 cells. Furthermore, itraconazole suppressed Hedgehog signaling and counteracted the activation of the Hedgehog agonist recombinant human Sonic Hedgehog (rhShh). <i>In vivo</i>, itraconazole significantly reduced tumor growth in A375 and A2058 xenograft models.</p><p><strong>Conclusion: </strong>Itraconazole induces autophagy-mediated apoptosis in melanoma cells by inhibiting Hedgehog signaling, underscoring its potential as a therapeutic option for melanoma treatment.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"16 ","pages":"1545243"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2025.1545243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Itraconazole, a widely used antifungal medication, has shown potential in inhibiting tumor growth and reducing angiogenesis. However, its role in melanoma tumor growth remains insufficiently explored. This study investigates the inductive effect of itraconazole on autophagy-mediated apoptosis in melanoma cells.

Method: Potential drug targets were identified using the PMF machine learning algorithm. Apoptosis and cell cycle in melanoma cell lines A375 and A2058 were assessed via flow cytometry. Western blot analysis was performed to examine autophagy and associated signaling proteins, while autophagy flux and autophagosome formation were visualized using fluorescence microscopy. A melanoma cell xenograft mouse model was established to evaluate the inhibitory mechanisms of itraconazole on tumor cell proliferation.

Result: Using the PMF machine learning algorithm, SQSTM1 was identified as the primary target of itraconazole. Itraconazole inhibited melanoma cell proliferation by inducing G1 phase arrest and autophagy-mediated apoptosis in A375 and A2058 cells. Furthermore, itraconazole suppressed Hedgehog signaling and counteracted the activation of the Hedgehog agonist recombinant human Sonic Hedgehog (rhShh). In vivo, itraconazole significantly reduced tumor growth in A375 and A2058 xenograft models.

Conclusion: Itraconazole induces autophagy-mediated apoptosis in melanoma cells by inhibiting Hedgehog signaling, underscoring its potential as a therapeutic option for melanoma treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信