METTL14-mediated m6A modification of DDIT4 promotes its mRNA stability in aging-related idiopathic pulmonary fibrosis.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-02-07 DOI:10.1080/15592294.2025.2462898
Dan Li, Li Qian, Yufeng Du, Lifang Liu, Ziyue Sun, Yongkang Han, Xiangrui Guo, Chao Shen, Zheng Zhang, Xuejun Liu
{"title":"METTL14-mediated m<sup>6</sup>A modification of DDIT4 promotes its mRNA stability in aging-related idiopathic pulmonary fibrosis.","authors":"Dan Li, Li Qian, Yufeng Du, Lifang Liu, Ziyue Sun, Yongkang Han, Xiangrui Guo, Chao Shen, Zheng Zhang, Xuejun Liu","doi":"10.1080/15592294.2025.2462898","DOIUrl":null,"url":null,"abstract":"<p><p>Although N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) may be related to the pathogenesis of fibrotic process, the mechanism of m<sup>6</sup>A modification in aging-related idiopathic pulmonary fibrosis (IPF) remains unclear. Three-milliliter venous blood was collected from IPF patients and healthy controls. MeRIP-seq and RNA-seq were utilized to investigate differential m<sup>6</sup>A modification. The expressions of identified m<sup>6</sup>A regulator and target gene were validated using MeRIP-qPCR and real-time PCR. Moreover, we established an animal model and a senescent model of A549 cells to explore the associated molecular mechanism. Our study provided a panorama of m<sup>6</sup>A methylation in IPF. Increased peaks (3756) and decreased peaks (4712) were observed in the IPF group. The association analysis showed that 749 DEGs were affected by m<sup>6</sup>A methylation in IPF. Among the m<sup>6</sup>A regulators, the expression of METTL14 decreased in IPF. The m<sup>6</sup>A level of our interested gene DDIT4 decreased significantly, but the mRNA level of DDIT4 was higher in IPF. This was further verified in bleomycin-induced pulmonary fibrosis. At the cellular level, it was further confirmed that METTL14 and DDIT4 might participate in the senescence of alveolar epithelial cells. The downregulation of METTL14 might inhibit the decay of DDIT4 mRNA by reducing the m<sup>6</sup>A modification level of DDIT4 mRNA, leading to high expression of DDIT4 mRNA and protein. Our study provided a panorama of m<sup>6</sup>A alterations in IPF and discovered METTL14 as a potential intervention target for epigenetic modification in IPF. These results pave the way for future investigations regarding m<sup>6</sup>A modifications in aging-related IPF.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2462898"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2462898","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although N6-methyladenosine (m6A) may be related to the pathogenesis of fibrotic process, the mechanism of m6A modification in aging-related idiopathic pulmonary fibrosis (IPF) remains unclear. Three-milliliter venous blood was collected from IPF patients and healthy controls. MeRIP-seq and RNA-seq were utilized to investigate differential m6A modification. The expressions of identified m6A regulator and target gene were validated using MeRIP-qPCR and real-time PCR. Moreover, we established an animal model and a senescent model of A549 cells to explore the associated molecular mechanism. Our study provided a panorama of m6A methylation in IPF. Increased peaks (3756) and decreased peaks (4712) were observed in the IPF group. The association analysis showed that 749 DEGs were affected by m6A methylation in IPF. Among the m6A regulators, the expression of METTL14 decreased in IPF. The m6A level of our interested gene DDIT4 decreased significantly, but the mRNA level of DDIT4 was higher in IPF. This was further verified in bleomycin-induced pulmonary fibrosis. At the cellular level, it was further confirmed that METTL14 and DDIT4 might participate in the senescence of alveolar epithelial cells. The downregulation of METTL14 might inhibit the decay of DDIT4 mRNA by reducing the m6A modification level of DDIT4 mRNA, leading to high expression of DDIT4 mRNA and protein. Our study provided a panorama of m6A alterations in IPF and discovered METTL14 as a potential intervention target for epigenetic modification in IPF. These results pave the way for future investigations regarding m6A modifications in aging-related IPF.

mettl14介导的m6A修饰DDIT4促进其mRNA在衰老相关特发性肺纤维化中的稳定性。
虽然n6 -甲基腺苷(m6A)可能与纤维化过程的发病机制有关,但m6A修饰在衰老相关特发性肺纤维化(IPF)中的机制尚不清楚。采集IPF患者和健康对照者静脉血3毫升。利用MeRIP-seq和RNA-seq研究m6A的差异修饰。利用MeRIP-qPCR和real-time PCR对鉴定的m6A调控基因和靶基因的表达进行验证。此外,我们还建立了A549细胞的动物模型和衰老模型,探讨其相关的分子机制。我们的研究提供了IPF中m6A甲基化的全景图。IPF组峰增加(3756个),峰减少(4712个)。关联分析显示,IPF中有749个基因受到m6A甲基化的影响。在m6A调节因子中,METTL14在IPF中的表达降低。我们感兴趣的基因DDIT4的m6A水平显著降低,但IPF中DDIT4的mRNA水平较高。这在博莱霉素诱导的肺纤维化中得到进一步证实。在细胞水平上,进一步证实METTL14和DDIT4可能参与了肺泡上皮细胞的衰老。下调METTL14可能通过降低DDIT4 mRNA的m6A修饰水平来抑制DDIT4 mRNA的衰变,导致DDIT4 mRNA和蛋白的高表达。我们的研究提供了IPF中m6A改变的全景图,并发现METTL14是IPF表观遗传修饰的潜在干预靶点。这些结果为未来研究m6A在衰老相关IPF中的修饰铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信