Storage of household and greenhouse ashes on the surface of sandy soils: consequences for the soil environment.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Artur Pędziwiatr
{"title":"Storage of household and greenhouse ashes on the surface of sandy soils: consequences for the soil environment.","authors":"Artur Pędziwiatr","doi":"10.1007/s10653-025-02378-z","DOIUrl":null,"url":null,"abstract":"<p><p>In households and greenhouses, fuel combustion generates ashes that are sometimes deposited on the of soil surface. The consequences of the deposition of such wastes on soil properties are not well known. Therefore, this study determines these geochemical processes (effects of the deposition of household and greenhouse ashes on buried sandy soils) and soil-forming processes. The study reveals that the deposition of household ashes increases the pH of buried Arenosols, while greenhouse ashes do not raise the pH of buried soil. The increased pH of buried soils caused by household ashes arises from calcite dissolution, Ca and K mobilisation, and Ca and K trapping by coatings on quartz grains. In turn, pozzolanic reactions and the crystallisation of gypsum (or a mixture of calcite and gypsum) on the surface of coke in greenhouse ashes limit Ca leaching downwards in the soil profile. Soil horizons with household and greenhouse ashes are characterised by relatively high contents of metal(loid)s. Furthermore, the mobilisation of metal(loid)s is evidenced from horizons containing both types of combustion wastes downwards in the soil profiles. The contents of Mn, Ti, Zn, Cd, Sr, As, Cr, V, and Ba in sandy horizons buried by household ashes are higher than the contents of these elements in soils, reflecting the local geochemical background. For sandy horizons buried by greenhouse ashes, the enrichment of Cd, Sr, As, Cr, and Ba is noted as being relative to soils from a local geochemical background. Therefore, this study demonstrates that household and greenhouse ashes need special attention because of their potential negative environmental effects. The incineration of household ashes (and greenhouse ashes) with municipal wastes, and metal(loid)s recovery from the resulting ashes is a promising management strategy for these types of combustion wastes instead of storing them around households.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"68"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02378-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In households and greenhouses, fuel combustion generates ashes that are sometimes deposited on the of soil surface. The consequences of the deposition of such wastes on soil properties are not well known. Therefore, this study determines these geochemical processes (effects of the deposition of household and greenhouse ashes on buried sandy soils) and soil-forming processes. The study reveals that the deposition of household ashes increases the pH of buried Arenosols, while greenhouse ashes do not raise the pH of buried soil. The increased pH of buried soils caused by household ashes arises from calcite dissolution, Ca and K mobilisation, and Ca and K trapping by coatings on quartz grains. In turn, pozzolanic reactions and the crystallisation of gypsum (or a mixture of calcite and gypsum) on the surface of coke in greenhouse ashes limit Ca leaching downwards in the soil profile. Soil horizons with household and greenhouse ashes are characterised by relatively high contents of metal(loid)s. Furthermore, the mobilisation of metal(loid)s is evidenced from horizons containing both types of combustion wastes downwards in the soil profiles. The contents of Mn, Ti, Zn, Cd, Sr, As, Cr, V, and Ba in sandy horizons buried by household ashes are higher than the contents of these elements in soils, reflecting the local geochemical background. For sandy horizons buried by greenhouse ashes, the enrichment of Cd, Sr, As, Cr, and Ba is noted as being relative to soils from a local geochemical background. Therefore, this study demonstrates that household and greenhouse ashes need special attention because of their potential negative environmental effects. The incineration of household ashes (and greenhouse ashes) with municipal wastes, and metal(loid)s recovery from the resulting ashes is a promising management strategy for these types of combustion wastes instead of storing them around households.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信