Melisa Su Yordanlı, Roberto Escobar, Jessica Meza, Deniz Akgül, Yuxin Zhao, Alper Uzun, F Ahu Akin, Viktorya Aviyente, Abdurrahman C Atesin, Tülay A Ateşin
{"title":"DFT Study of the Mechanism of Selective Hydrogenation of Acetylene by Rhodium Single-Atom Catalyst Supported on HY Zeolite.","authors":"Melisa Su Yordanlı, Roberto Escobar, Jessica Meza, Deniz Akgül, Yuxin Zhao, Alper Uzun, F Ahu Akin, Viktorya Aviyente, Abdurrahman C Atesin, Tülay A Ateşin","doi":"10.1002/cphc.202400867","DOIUrl":null,"url":null,"abstract":"<p><p>The selectivity of acetylene hydrogenation by the Rh single-atom catalyst (SAC) supported on HY zeolite was investigated using density functional theory (DFT) and a 5/83T quantum mechanics/molecular mechanics (QM/MM) embedded cluster model. The calculated activation barrier (ΔG<sup>≠</sup>) for the oxidative addition of dihydrogen to the Rh metal center (15.9 kcal/mol) is lower in energy than that for the σ-bond metathesis of dihydrogen to the Rh-C bond (22.7 kcal/mol) and the Rh-O bond (28.4 kcal/mol). The activation barriers of the oxidative addition of subsequent dihydrogen molecules are significantly higher than that of the oxidative addition of the first dihydrogen molecule. These findings align with the experimentally observed activity and selectivity of the atomically dispersed Rh catalyst supported on HY zeolite. Natural bond orbital (NBO), molecular orbital (MO) and fuzzy bond order analyses were used to examine the interaction between the Rh metal center and acetylene versus ethylene ligands. The occupancies of the Rh lone pairs, π-bonding and π*-antibonding orbitals of acetylene and ethylene are consistent with the expected stronger interaction between the Rh metal center and acetylene compared to ethylene on the HY zeolite support.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400867"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400867","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The selectivity of acetylene hydrogenation by the Rh single-atom catalyst (SAC) supported on HY zeolite was investigated using density functional theory (DFT) and a 5/83T quantum mechanics/molecular mechanics (QM/MM) embedded cluster model. The calculated activation barrier (ΔG≠) for the oxidative addition of dihydrogen to the Rh metal center (15.9 kcal/mol) is lower in energy than that for the σ-bond metathesis of dihydrogen to the Rh-C bond (22.7 kcal/mol) and the Rh-O bond (28.4 kcal/mol). The activation barriers of the oxidative addition of subsequent dihydrogen molecules are significantly higher than that of the oxidative addition of the first dihydrogen molecule. These findings align with the experimentally observed activity and selectivity of the atomically dispersed Rh catalyst supported on HY zeolite. Natural bond orbital (NBO), molecular orbital (MO) and fuzzy bond order analyses were used to examine the interaction between the Rh metal center and acetylene versus ethylene ligands. The occupancies of the Rh lone pairs, π-bonding and π*-antibonding orbitals of acetylene and ethylene are consistent with the expected stronger interaction between the Rh metal center and acetylene compared to ethylene on the HY zeolite support.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.