Dr. Siran Zhang, Dr. Chongchong Wu, Dr. Jing Xin, Guoming Yang, Dr. Yongheng Li, Dr. Mengjun Su, Haihong Zhang, Dr. Huiling Zhang, Lianying Wang
{"title":"Advances in CO2-assisted oxidative dehydrogenation of light alkanes to light alkenes","authors":"Dr. Siran Zhang, Dr. Chongchong Wu, Dr. Jing Xin, Guoming Yang, Dr. Yongheng Li, Dr. Mengjun Su, Haihong Zhang, Dr. Huiling Zhang, Lianying Wang","doi":"10.1002/cphc.202401073","DOIUrl":null,"url":null,"abstract":"<p>The CO<sub>2</sub>-assisted oxidative dehydrogenation (ODH) of light alkanes offers a promising route for converting underutilized resources into valuable chemical feedstocks while addressing environmental challenges associated with CO<sub>2</sub> emissions. CO<sub>2</sub> plays a dual role in ODH by acting as a mild oxidant that enhances product selectivity and catalyst stability while preventing carbon deposition through the Reverse Water-Gas Shift (RWGS) and Boudouard reactions. The review has elucidated a variety of catalyst design and optimization strategies that may guide the future development of novel CO<sub>2</sub>-assisted ODH catalysts with improved alkane conversion, superior alkene selectivity, and long-term stability. It provides a comprehensive analysis of the structural characteristics, catalytic performances, and reaction mechanisms of typical catalysts, including transition metal catalysts (e. g., Cr-based, Co-based, V-based), metal oxide catalysts (e. g., Ga-based, In-based), noble metal catalysts (e. g., Pt-based, Ru-based), and bimetallic catalysts. Special attention is given to the structure-performance relationship of these catalysts, emphasizing how changes in promoters, supports, and morphology affect critical properties such as redox behavior, acidity-basicity balance, dispersion of active components, and catalyst-support interactions. Finally, future research directions and perspectives for the CO<sub>2</sub>-assisted ODH of ethane and propane are proposed, with a focus on advancing catalyst design and optimization strategies. This review aims to serve as a comprehensive reference for researchers exploring the potential of CO<sub>2</sub>-assisted ODH in promoting sustainable production of light alkenes.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphc.202401073","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The CO2-assisted oxidative dehydrogenation (ODH) of light alkanes offers a promising route for converting underutilized resources into valuable chemical feedstocks while addressing environmental challenges associated with CO2 emissions. CO2 plays a dual role in ODH by acting as a mild oxidant that enhances product selectivity and catalyst stability while preventing carbon deposition through the Reverse Water-Gas Shift (RWGS) and Boudouard reactions. The review has elucidated a variety of catalyst design and optimization strategies that may guide the future development of novel CO2-assisted ODH catalysts with improved alkane conversion, superior alkene selectivity, and long-term stability. It provides a comprehensive analysis of the structural characteristics, catalytic performances, and reaction mechanisms of typical catalysts, including transition metal catalysts (e. g., Cr-based, Co-based, V-based), metal oxide catalysts (e. g., Ga-based, In-based), noble metal catalysts (e. g., Pt-based, Ru-based), and bimetallic catalysts. Special attention is given to the structure-performance relationship of these catalysts, emphasizing how changes in promoters, supports, and morphology affect critical properties such as redox behavior, acidity-basicity balance, dispersion of active components, and catalyst-support interactions. Finally, future research directions and perspectives for the CO2-assisted ODH of ethane and propane are proposed, with a focus on advancing catalyst design and optimization strategies. This review aims to serve as a comprehensive reference for researchers exploring the potential of CO2-assisted ODH in promoting sustainable production of light alkenes.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.