Nafisa R Komilova, Plamena R Angelova, Elisa Cali, Annarita Scardamaglia, Ulugbek Z Mirkhodjaev, Henry Houlden, Noemi Esteras, Andrey Y Abramov
{"title":"Charcot Marie Tooth disease pathology is associated with mitochondrial dysfunction and lower glutathione production.","authors":"Nafisa R Komilova, Plamena R Angelova, Elisa Cali, Annarita Scardamaglia, Ulugbek Z Mirkhodjaev, Henry Houlden, Noemi Esteras, Andrey Y Abramov","doi":"10.1007/s00018-025-05612-0","DOIUrl":null,"url":null,"abstract":"<p><p>Charcot Marie Tooth (CMT) or hereditary motor and sensory neuropathy is a heterogeneous neurological disorder leading to nerve damage and muscle weakness. Although multiple mutations associated with CMT were identified, the cellular and molecular mechanisms of this pathology are still unclear, although most of the subtype of this disease involve mitochondrial dysfunction and oxidative stress in the mechanism of pathology. Using patients' fibroblasts of autosomal recessive, predominantly demyelinating form of CMT-CMT4B3 subtype, we studied the effect of these mutations on mitochondrial metabolism and redox balance. We have found that CMT4B3-associated mutations decrease mitochondrial membrane potential and mitochondrial NADH redox index suggesting an increase rate of mitochondrial respiration in these cells. However, mitochondrial dysfunction had no profound effect on the overall levels of ATP and on the energy capacity of these cells. Although the rate of reactive oxygen species production in mitochondria and cytosol in fibroblasts with CMT4B3 pathology was not significantly higher than in control, the level of GSH was significantly lower. Lower level of glutathione was most likely induced by the lower level of NADPH production, which was used for a GSH cycling, however, expression levels and activity of the major NADPH producing enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH) was not altered. Low level of GSH renders the fibroblast with CMT4B3 pathology more sensitive to oxidative stress and further treatment of cells with hydroperoxide increases CMT patients' fibroblast death rates compared to control. Thus, CMT4B3 pathology makes cells vulnerable to oxidative stress due to the lack of major endogenous antioxidant GSH.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"72"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05612-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Charcot Marie Tooth (CMT) or hereditary motor and sensory neuropathy is a heterogeneous neurological disorder leading to nerve damage and muscle weakness. Although multiple mutations associated with CMT were identified, the cellular and molecular mechanisms of this pathology are still unclear, although most of the subtype of this disease involve mitochondrial dysfunction and oxidative stress in the mechanism of pathology. Using patients' fibroblasts of autosomal recessive, predominantly demyelinating form of CMT-CMT4B3 subtype, we studied the effect of these mutations on mitochondrial metabolism and redox balance. We have found that CMT4B3-associated mutations decrease mitochondrial membrane potential and mitochondrial NADH redox index suggesting an increase rate of mitochondrial respiration in these cells. However, mitochondrial dysfunction had no profound effect on the overall levels of ATP and on the energy capacity of these cells. Although the rate of reactive oxygen species production in mitochondria and cytosol in fibroblasts with CMT4B3 pathology was not significantly higher than in control, the level of GSH was significantly lower. Lower level of glutathione was most likely induced by the lower level of NADPH production, which was used for a GSH cycling, however, expression levels and activity of the major NADPH producing enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH) was not altered. Low level of GSH renders the fibroblast with CMT4B3 pathology more sensitive to oxidative stress and further treatment of cells with hydroperoxide increases CMT patients' fibroblast death rates compared to control. Thus, CMT4B3 pathology makes cells vulnerable to oxidative stress due to the lack of major endogenous antioxidant GSH.
Charcot Marie Tooth (CMT)或遗传性运动和感觉神经病变是一种导致神经损伤和肌肉无力的异质性神经系统疾病。虽然发现了与CMT相关的多个突变,但该病理的细胞和分子机制尚不清楚,尽管该疾病的大多数亚型在病理机制上涉及线粒体功能障碍和氧化应激。利用常染色体隐性、以脱髓鞘形式为主的CMT-CMT4B3亚型患者成纤维细胞,我们研究了这些突变对线粒体代谢和氧化还原平衡的影响。我们发现cmt4b3相关突变降低了线粒体膜电位和线粒体NADH氧化还原指数,表明这些细胞的线粒体呼吸速率增加。然而,线粒体功能障碍对ATP的总体水平和这些细胞的能量容量没有深刻的影响。尽管CMT4B3病理成纤维细胞线粒体和细胞质中活性氧的产生率不显著高于对照组,但GSH水平显著降低。较低的谷胱甘肽水平很可能是由用于谷胱甘肽循环的NADPH产生水平较低引起的,然而,主要的NADPH产生酶葡萄糖-6-磷酸脱氢酶(G6PDH)的表达水平和活性并未改变。低水平的谷胱甘肽使CMT4B3病理的成纤维细胞对氧化应激更敏感,与对照组相比,用过氧化氢进一步治疗细胞会增加CMT患者的成纤维细胞死亡率。因此,由于缺乏主要的内源性抗氧化剂GSH, CMT4B3病理使细胞容易受到氧化应激。
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered