Mechanistic insights into Rho/MRTF inhibition-induced apoptotic events and prevention of drug resistance in melanoma: implications for the involvement of pirin.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Frontiers in Pharmacology Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.3389/fphar.2025.1505000
Bardees M Foda, Annika E Baker, Łukasz Joachimiak, Marzena Mazur, Richard R Neubig
{"title":"Mechanistic insights into Rho/MRTF inhibition-induced apoptotic events and prevention of drug resistance in melanoma: implications for the involvement of pirin.","authors":"Bardees M Foda, Annika E Baker, Łukasz Joachimiak, Marzena Mazur, Richard R Neubig","doi":"10.3389/fphar.2025.1505000","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Overcoming therapy resistance is critical for effective melanoma control. Upregulation of Rho/MRTF signaling in human and mouse melanomas causes resistance to targeted therapies. Inhibition of this pathway by MRTFi, CCG-257081 resensitized resistant melanomas to BRAF and MEK inhibitors. It also prevented the development of resistance to vemurafenib (Vem). Here, we investigate the role of apoptosis and the protein pirin in CCG-257081-mediated suppression of drug resistance.</p><p><strong>Methods: </strong>Using naïve and resistant mouse YUMMER melanoma cells, we studied the effect of the BRAF inhibitor Vem with or without CCG-257081 on real-time growth and apoptosis (activation of caspase, Propidium iodide (PI) staining, and PARP cleavage). The effects of CCG-257081 on proliferation (Ki67) and caspase-3 activation were assessed in resistant YUMMER_R tumors <i>in vivo</i>. Finally, two CCG-257081 enantiomers were tested for pirin binding, inhibition of the Rho/MRTF-mediated activation of ACTA2 gene expression in fibroblasts, and the prevention of Vem resistance development by YUMMER_P cells.</p><p><strong>Results: </strong>Vem reduced growth of parental but not resistant cells, while CCG-257081 inhibited both. The combination was more effective than Vem alone. CCG-257081, but not Vem, induced activation of caspase-3 and -7 in resistant cells and increased PARP cleavage and PI staining. CCG-257081 reduced proliferation and activated caspase-3 in YUMMER_R melanoma tumors. Both CCG-257081 enantiomers robustly suppressed development of Vem-resistant colonies with the S isomer being more potent (1 μM IC<sub>50</sub>).</p><p><strong>Conclusion: </strong>CCG-257081 appears to target pre-resistant cells and Vem-induced resistant cells through enhanced apoptosis. Inhibition of pirin or the Rho/MRTF pathway can be employed to prevent melanoma resistance.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"16 ","pages":"1505000"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2025.1505000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Overcoming therapy resistance is critical for effective melanoma control. Upregulation of Rho/MRTF signaling in human and mouse melanomas causes resistance to targeted therapies. Inhibition of this pathway by MRTFi, CCG-257081 resensitized resistant melanomas to BRAF and MEK inhibitors. It also prevented the development of resistance to vemurafenib (Vem). Here, we investigate the role of apoptosis and the protein pirin in CCG-257081-mediated suppression of drug resistance.

Methods: Using naïve and resistant mouse YUMMER melanoma cells, we studied the effect of the BRAF inhibitor Vem with or without CCG-257081 on real-time growth and apoptosis (activation of caspase, Propidium iodide (PI) staining, and PARP cleavage). The effects of CCG-257081 on proliferation (Ki67) and caspase-3 activation were assessed in resistant YUMMER_R tumors in vivo. Finally, two CCG-257081 enantiomers were tested for pirin binding, inhibition of the Rho/MRTF-mediated activation of ACTA2 gene expression in fibroblasts, and the prevention of Vem resistance development by YUMMER_P cells.

Results: Vem reduced growth of parental but not resistant cells, while CCG-257081 inhibited both. The combination was more effective than Vem alone. CCG-257081, but not Vem, induced activation of caspase-3 and -7 in resistant cells and increased PARP cleavage and PI staining. CCG-257081 reduced proliferation and activated caspase-3 in YUMMER_R melanoma tumors. Both CCG-257081 enantiomers robustly suppressed development of Vem-resistant colonies with the S isomer being more potent (1 μM IC50).

Conclusion: CCG-257081 appears to target pre-resistant cells and Vem-induced resistant cells through enhanced apoptosis. Inhibition of pirin or the Rho/MRTF pathway can be employed to prevent melanoma resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信