Direct coupling analysis and the attention mechanism.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Francesco Caredda, Andrea Pagnani
{"title":"Direct coupling analysis and the attention mechanism.","authors":"Francesco Caredda, Andrea Pagnani","doi":"10.1186/s12859-025-06062-y","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are involved in nearly all cellular functions, encompassing roles in transport, signaling, enzymatic activity, and more. Their functionalities crucially depend on their complex three-dimensional arrangement. For this reason, being able to predict their structure from the amino acid sequence has been and still is a phenomenal computational challenge that the introduction of AlphaFold solved with unprecedented accuracy. However, the inherent complexity of AlphaFold's architectures makes it challenging to understand the rules that ultimately shape the protein's predicted structure. This study investigates a single-layer unsupervised model based on the attention mechanism. More precisely, we explore a Direct Coupling Analysis (DCA) method that mimics the attention mechanism of several popular Transformer architectures, such as AlphaFold itself. The model's parameters, notably fewer than those in standard DCA-based algorithms, can be directly used for extracting structural determinants such as the contact map of the protein family under study. Additionally, the functional form of the energy function of the model enables us to deploy a multi-family learning strategy, allowing us to effectively integrate information across multiple protein families, whereas standard DCA algorithms are typically limited to single protein families. Finally, we implemented a generative version of the model using an autoregressive architecture, capable of efficiently generating new proteins in silico.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"41"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06062-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins are involved in nearly all cellular functions, encompassing roles in transport, signaling, enzymatic activity, and more. Their functionalities crucially depend on their complex three-dimensional arrangement. For this reason, being able to predict their structure from the amino acid sequence has been and still is a phenomenal computational challenge that the introduction of AlphaFold solved with unprecedented accuracy. However, the inherent complexity of AlphaFold's architectures makes it challenging to understand the rules that ultimately shape the protein's predicted structure. This study investigates a single-layer unsupervised model based on the attention mechanism. More precisely, we explore a Direct Coupling Analysis (DCA) method that mimics the attention mechanism of several popular Transformer architectures, such as AlphaFold itself. The model's parameters, notably fewer than those in standard DCA-based algorithms, can be directly used for extracting structural determinants such as the contact map of the protein family under study. Additionally, the functional form of the energy function of the model enables us to deploy a multi-family learning strategy, allowing us to effectively integrate information across multiple protein families, whereas standard DCA algorithms are typically limited to single protein families. Finally, we implemented a generative version of the model using an autoregressive architecture, capable of efficiently generating new proteins in silico.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信