{"title":"Lock and key: Quest to find the most compatible membrane mimetic for studying membrane proteins in native environment","authors":"Rahul Yadav , Debarghya Pratim Gupta , Chandan Singh","doi":"10.1016/j.bbamem.2025.184414","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane proteins play crucial roles in cellular signal transduction, molecule transport, host-pathogen interactions, and metabolic processes. However, mutations, changes in membrane properties, and environmental factors can lead to loss of protein function. This results in impaired ligand binding and misfolded structures that prevent proteins from adopting their native conformation. Many membrane proteins are also therapeutic targets in various diseases, where drugs can either restore or inhibit their specific functions. Understanding membrane protein structure and function is vital for advancing cell biology and physiology. Experimental studies often involve extracting proteins from their native environments and reconstituting them in membrane mimetics like detergents, bicelles, amphipols, nanodiscs, and liposomes. These mimetics replicate aspects of native membranes, aiding in the study of protein behavior outside living cells. Scientists continuously explore new, more native-like membrane mimetics to improve experimental accuracy. This dynamic field involves evaluating the advantages and disadvantages of different mimetics and optimizing the reconstitution process to better mimic natural conditions.</div></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1867 3","pages":"Article 184414"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273625000082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane proteins play crucial roles in cellular signal transduction, molecule transport, host-pathogen interactions, and metabolic processes. However, mutations, changes in membrane properties, and environmental factors can lead to loss of protein function. This results in impaired ligand binding and misfolded structures that prevent proteins from adopting their native conformation. Many membrane proteins are also therapeutic targets in various diseases, where drugs can either restore or inhibit their specific functions. Understanding membrane protein structure and function is vital for advancing cell biology and physiology. Experimental studies often involve extracting proteins from their native environments and reconstituting them in membrane mimetics like detergents, bicelles, amphipols, nanodiscs, and liposomes. These mimetics replicate aspects of native membranes, aiding in the study of protein behavior outside living cells. Scientists continuously explore new, more native-like membrane mimetics to improve experimental accuracy. This dynamic field involves evaluating the advantages and disadvantages of different mimetics and optimizing the reconstitution process to better mimic natural conditions.
期刊介绍:
BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.